
1

By Shree Nair

MySQL Whitepaper
®

Top metrics
to monitor
in MySQL
databases

table of contents

2

Introduction ..3

Benefits of following a monitoring plan ..4

Database metric types ...4

How often should one perform monitoring ...5

Performance metric categories ...6

 Work metrics ...6

 Resource metrics ...7

Monitoring performance ..8

Best work metrics to monitor ...8

 Throughput ..8

 Throughput metrics in MySQL ..9

 The questions and queries status variable ...9

 The threads_running status variable ... 10

 The slow_queries server variable ... 11

 The sys_schema... 13

Best resource metrics to monitor ... 14

 Connections .. 14

 Aborted client and connections ...17

 Connection errors .. 18

 Buffer pool usage... 21

 Configuring the buffer pool ... 21

 Important lannoDB buffer pool metrics ..22

 A word about the innoDB buffer pool LRU algorithm23

 Some MySQL peformance tuning tips ...24

 Converting buffer pool metrics to bytes ...28

Conclusion ..29

About the Author ... 32

3

 Introduction

As tables increase in size and more and more users come online, it becomes necessary to fine-

tune the database server from time to time. The secret to knowing what adjustments to make is to

perform regular monitoring. Most databases offer dozens, if not hundreds, of performance metrics

that one can assess.

As a database administrator, the top priority is to keep the databases and dependent applications

running smoothly at all times. The best weapon is the careful monitoring of key performance

metrics. In a perfect world, one would want to be up-to-date regarding every aspect of the activity

of the database. One would want to know how many events occurred, how big they were, when

they happened, and how long they took to complete.

There is no shortage of tools that can monitor resource consumption, provide instantaneous

status snapshots, and generate wait analysis and graphs. The challenge is that some metrics can

be expensive to measure, and perhaps they can require much work to analyze.

This whitepaper focuses on monitoring key performance metrics.

This whitepaper describes how to:

•	 Examine the benefits of performance monitoring.

•	 Outline the primary performance metric categories.

•	 List the monitoring tools provided by MySQL:

•	 Server variables

•	 Performance schema

•	 Sys schema

•	 Learn how to monitor:

•	 Transaction throughput

•	 Query execution performance

Further, this whitepaper narrows down the field to the performance metrics that provide the most

value for the effort. Also, this whitepaper presents some tangible ways to capture and study them.

It is by tracking the most useful metrics and reviewing them in the most informative ways that one

balance paranoid over-monitoring and unforeseen firefighting crises. This whitepaper focuses on

monitoring database connections and buffer pool metrics.

4

Benefits of following a
monitoring plan

A database, including MySQL, back most applications. It is crucial to monitor databases effectively

to keep databases and applications running smoothly. A good database monitoring plan can help

one stay on top of:

•	 Performance: The main subject of this whitepaper, monitoring how the database performs

can help detect bottlenecks and other issues before catastrophe strikes. Beyond helping one

avert emergencies, performance metrics can assist one in deciding whether a performance

increase is necessary or workable. For instance, by keeping a track record of query execution

times, one could spot any suboptimal SQL statements and come up with improvements.

•	 Growth: Observe requirements in terms of users and traffic. Database usage needs to evolve

faster than expected.

•	 Security: Ensure that one applied adequate security measures.

Database metric types

Before going through identifying metrics to follow, perhaps one should start at the beginning and

ask, What are metrics?

Metrics capture a value about the systems at a specific point in time. An example is the number of

users logged into the database.

Therefore, systems collect metrics at regular intervals (such as once per second and one per

minute), to monitor a system.

There are two essential categories of metrics: those that are most useful in identifying problems

and those whose primary value is in investigating issues. This whitepaper covers what data to

collect. So, one can:

5

1.	 Recognize potential issues before they occur.

2.	 Investigate and understand performance issues.

Beyond metrics, there are other types of database monitoring that this whitepaper does not

address. These include tracking events and security.

How often should one perform
monitoring?

How often one monitors different aspects of the database depends on how mission-critical it and

the applications it supports are. A failure or disruption may cause a severe impact on the business

operations and organization, or perhaps even result in catastrophe. Then, one needs to be on

top of both performance and security issues at all times. One can reduce the need to monitor

continually the performance dashboard to a weekly inspection. Accomplish this by setting up

alerts to inform one of the critical issues in real-time.

Specialized tools that provide real-time and periodic alerts should monitor database performance

metrics. Real-time alerts are a must for mission-critical databases and databases with sensitive

information susceptible to attack. So, one can take care of urgent issues as soon as they occur.

Real-time preventive measures can protect the database from certain types of attacks, even

before one has time to respond.

The database administrators, Information Technology operations staff, and users shared

responsibility in performance monitoring since some factors that affect database performance lie

beyond the database itself. It also makes sense to include some application developers informed.

So, they can investigate the application side of things.

Database administrators need not monitor the applications that interact with the database.

However, they must possess a general understanding of how developers implement applications

and the architecture of these applications.

6

Performance metric categories

The previous section described the two main uses of database metrics: problem identification

and problem investigation. Likewise, there are two essential categories of metrics that pertain

to performance: work metrics and resource metrics. For each system that is part of the software

infrastructure, consider which work metrics and resource metrics apply and available. Also, collect

whatever one can. One need not monitor every metric. However, some metrics may play a more

significant role once one identifies performance issues (that is, during problem investigation).

The next two sections cover each of the two performance metric types in more detail.

Work metrics

Work metrics gauge the top-level health of the database by measuring its useful output. One may

break down work metrics into four subtypes:

•	 Throughput: The amount of work the system is doing per unit of time. Systems usually record

throughput as an absolute number. Examples include the number of transactions or queries

per second.

•	 Success: Represents the percentage of work that the system executed successfully (that is,

the number of successful queries).

•	 Error: Captures the number of erroneous results, usually expressed as a rate of errors per unit

of time. This yields errors per unit of work. The system often captured error metrics separately

from success metrics when there are several potential sources of error, some of which are

more serious or actionable than others.

•	 Performance: Quantifies how efficiently a component is doing its work. The most common

performance metric is latency. Latency represents the time required to complete a unit of

work. One can express latency as an average and as a percentile, such as 99% of requests

returned within 0.1s.

The above metrics provide high-level but telling data that can help one answer the most critical

questions about the internal health and performance of a system. That is to say:

7

•	 Is the database available and doing what we designed it to do?

•	 How fast is it producing work?

•	 What is the quality of that work?

Resource metrics

Resources are hardware, software, and network components that the database requires to

perform its job. Some resources are low level, such as physical components like CPU, memory,

disks, and network interfaces. One can also consider higher-level resources such as the query

cache and database waits as a resource and therefore monitor these higher-level resources.

Resource metrics are useful in helping one reconstruct a detailed picture of the state of the

database, making them valuable for investigation and diagnosis of problems. Resource metrics

cover four key areas:

1.	 Utilization: The percentage of time that the database is busy or the percentage of the capacity

of the database in use.

2.	 Saturation: A measure of the amount of requested work that the database cannot yet service

and waits in the queue.

3.	 Errors: Represents internal errors that may or may not be observable in the database’s output.

4.	 Availability: Denotes the percentage of time that the database responded to requests.

8

Monitoring performance
Both work and resource metrics include two other types of metrics:

1.	 Work metrics:

•	 Database, transaction or query throughput

•	 Query execution performance

2.	 Resource metrics:

•	 Connections

•	 Buffer pool usag

Best work metrics to monitor

Throughput

Throughput measures the speed of a database system. Systems typically express throughput as

the number of transactions per second. Consider the following differences:

•	 Write transactions versus read transactions

•	 Sustained rates versus peak rates

•	 A 10-byte row versus a 1000-byte row

Because of these differences, it is best to measure:

•	 Database throughput (for the database)

•	 Transaction throughput (for any operation)

•	 Query throughput (for query execution)

9

Throughput metrics in MySQL

MySQL provides throughput metrics for all the above transaction types.

The questions and queries status variables

There are two general MySQL status variables for measuring query execution: questions and

queries. Of the two, the client-centric view provided by the questions metric makes it easier to

interpret than the queries counter. T the latter also counts statements executed as part of stored

programs, and commands such as PREPARE and DEALLOCATE PREPARE that run as part of

server-side prepared statements.

SHOW GLOBAL STATUS LIKE “Questions”
Variable_name Value

Questions 66
SHOW GLOBAL STATUS LIKE “Queries”;
Variable_name Value

Queries 149

One can also monitor the breakdown of read and write commands to understand the workload

of the database better and identify potential bottlenecks. The com_select metric captures read

queries. Writes increment one of three status variables, depending on the statement type:

Writes = Com_insert + Com_update + Com_delete

SHOW GLOBAL STATUS LIKE “Com_select”;
Variable_name Value

Com_select 49

10

However, when are MySQL counters incremented? The MySQL documents list all the various

counter variables. However, they do not describe when the system incremented each counter. That

might seem like a trivial point. However, it is not trivial, especially if one captures metrics with high

resolution to diagnose MySQL performance incidents.

For instance, one could count queries when they start. Then, a spike in the number of queries in a

certain second could be because of an increase in traffic. However, if one measure queries at the

completion, then some critical resources becoming available (which allow many queries to complete)

can cause spikes. Such spikes often occur with table-level locks and row-level locks on InnoDB.

MySQL increments the questions and queries counters before executing the query. One may see

a very uniform rate of questions when the system started many queries, but the system did not

complete quickly because of waiting on some resource.

The threads_running status variable

It is instructive to look at the threads_running status variable to check for unusual numbers of

queries running concurrently and struggling to complete in time.

SHOW GLOBAL STATUS LIKE “Threads_running”;
Variable_name Value

Threads_running 29

A professional monitoring tool can present throughput metrics as a graph to make peaks and valleys

clearer:

Database throughputs

11

Transaction throughput

Measuring query execution performance is all about finding those queries that take too long to

identify the required data or bring the data back. One of the best metrics to gauge query speed is

latency. Latency is the time it takes a query to execute and return a result set. Latency is the time

to make one round trip.

MySQL provides a few options for monitoring query latency, including built-in metrics and

the performance schema. Enabled by default since version 5.6.6 of MySQL, the tables of the

performance_schema database within MySQL store low-level statistics about server events and

query execution.

The slow_queries server variable

It stores the number of queries that took more than long_query_time seconds. What is great about

this counter is that it increments regardless of whether the system enabled the slow query log.

That is a good thing because the system disabled the slow query log by default because logging

can place a bit of a drag on performance.

12

SHOW GLOBAL STATUS LIKE “Slow_queries”;
Variable_name Value

Slow_queries 99

The events_statements_summary_by_digest table of the performance schema contains a good

deal of key metrics. That table captures information about query volume, latency, errors, time spent

waiting for locks, and index usage. These metrics and more are available for each SQL statement

executed. The system presents statements in a normalized form. The normalized form means that

the system removes data values from the SQL and that the system standardized white space.

This query finds the top 10 statements by longest average run time:

SELECT substr(digest_text, 1, 50) AS digest_text_start
 , count_star
 , avg_timer_wait
 FROM performance_schema.events_statements_summary_by_digest
 ORDER BY avg_timer_wait DESC
LIMIT 10;
digest_text_start count_star avg_timer_wait

SHOW FULL TABLES FROM `sakila` 11110825767786
SHOW GLOBAL STATUS LIKE ? 11038069287388
SELECT `digest_text`, `count_star`, `avg_timer_w1945742257586
SHOW FIELDS FROM `sakila` . `actor` 1611721261340
SELECT `digest_text` , `count_star` , `avg_timer_w 2335116484794
SHOW FIELDS FROM `sakila` . `actor_info` SELECT `a 1221773712160
SELECT NAME , TYPE FROM `mysql` . `proc` WHERE `Db 2148939688506
SHOW FIELDS FROM `vehicles` . `vehiclemodelyear` 1144172298718
SHOW SCHEMAS 2132611131408
SHOW FIELDS FROM `sakila` . `customer` 199954017212

Performance schemas display event timer information in picoseconds (that is, trillionths of a second)

to present timing data in a standard unit. In the following example, the system divides TIMER_WAIT

1,000,000,000,000 to convert time data into seconds. The system also truncates values to six

decimal places:

13

SELECT substr(digest_text, 1, 50) AS digest_text_start
 , count_star
 , TRUNCATE(avg_timer_wait/1000000000000,6)
 FROM performance_schema.events_statements_summary_by_digest
 ORDER BY avg_timer_wait DESC
LIMIT 10;
digest_text_start count_star avg_timer_wait
--

SHOW FULL TABLES FROM `sakila` 11.110825
SHOW GLOBAL STATUS LIKE ? 11.038069
SELECT `digest_text`, `count_star`, `avg_timer_w 10.945742
etc.

Now one can see that the longest query took a little over one second to run.

The sys schema

Rather than write SQL statements against the performance schema, it is easier to use the sys

schema. It contains interpretable tables for inspecting the performance data.

The sys schema comes installed with MySQL, starting with version 5.7.7. However, users of earlier

versions can also install it. For instance, to install the sys schema on version 5.6 of MySQL, run the

following commands:

git clone https://github.com/mysql/mysql-sys.git
cd mysql-sys/
mysql -u root -p < ./sys_56.sql

The sys schema provides an organized set of metrics in a more human-readable format, making

the corresponding queries much simpler. For instance, to find the slowest statements (for example,

those in the 95th percentile by runtime), run the following query:

SELECT * FROM sys.statements_with_runtimes_in_95th_percentile;

14

Here again, a professional monitoring tool can pay dividends by merging various performance

metrics into one cohesive view:

Query execution performance

Best resource metrics to
monitor

Connections

Connection manager threads handle client connection requests on the network interfaces to

which the server listens. On all platforms, one manager thread handles transmission control

protocol and Internet protocol (TCP/IP) connection requests. Connection manager threads

15

associate each client connection with a thread dedicated to it that handles authentication and

request processing for that connection. Manager threads create a new thread when necessary.

However, try to avoid doing that by consulting the thread cache first to see whether it contains a

thread that it can use for the connection. When a connection ends, the system returns its thread to

the thread cache (that is, if the cache is not full). In this connection thread model, there are as many

threads as there are clients connected.

It is essential to monitor the client connections because the system refuses new client connections

once the database server runs out of available connections.

The MySQL connection limit defaults to 151. However, one can change it using the SET statement.

So, it is best not to assume anything. The @@max_connections variable stores the connection limit:

SELECT @@max_connections;
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_connections | 151 |
+-----------------+-------+

Set the connection limit like so:

SET GLOBAL max_connections = 200;

To set the connection limit such that it persists once the server restarts, add a line like this to the

‘my.cnf’ configuration file:

max_connections = 200

Do not hesitate to increase the number of max_connections. Per the MySQL documents,

production servers should be able to handle connections in the high hundreds or thousands. Just

remember there are some caveats when the server must handle many connections. For instance,

thread creation and disposal become expensive when there are a lot of them. Also, each thread

16

requires server and kernel resources, such as stack space. Therefore, to accommodate many

simultaneous connections, one needs to keep the stack size per thread small. That small stack

can lead to a situation where the stack size is too small, or the server consumes large amounts

of memory.

The takeaway here is that the database server should possess adequate amounts of processing

power and memory to accommodate a large user base.

MySQL provides a few good metrics for monitoring the connections:

Variable What it represents Why one should monitor it

threads_connected The total number of

clients that possess open

connections to the server.

Provides real-time

information on how many

clients connect to the server.

That can help in analyzing

traffic and in deciding the

best time for a server restart.

threads_running The number of threads that

are not sleeping.

Good for isolating which

connected threads are

processing queries, as

opposed to connections that

are open but are idle.

connections The number of connection

attempts (that is, whether

successful) to the MySQL

server.

Can give one a good idea

of how many people and

applications are accessing

the database. Over time,

these numbers reveal

busiest times and average

usage numbers.

connection_errors_internal The number of connections

refused because of internal

server errors (that is, failure

to start a new thread or an

out-of-memory condition).

Although MySQL

exposes several metrics

on connection errors,

Connection_errors_internal

is the most useful because

it only increments when

the error comes from the

server itself. Internal errors

can show an out-of-memory

condition or an inability to

start a new thread.

17

We can use the MySQL show status command to show MySQL variables and status information.

Here are a few examples:

SHOW GLOBAL STATUS LIKE ‘%Threads_connected%’;
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| Threads_connected | 2 |
+-------------------+-------+

SHOW GLOBAL STATUS LIKE ‘%Threads_running%’;
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| Threads_running | 1 |
+-----------------+-------+

SHOW GLOBAL STATUS LIKE ‘Connections’;
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Connections | 20 |
+---------------+-------+

Aborted client and connections

Every time a client cannot connect, the server increments the Aborted_connects status variable.

Unsuccessful connection attempts can occur because:

18

•	 A client attempts to access a database but does not possess privileges for it.

•	 A client uses an incorrect password.

•	 A connection packet does not contain the right information.

It takes more than connect_timeout seconds to get a connect packet.

If these kinds of things happen, then it might show that someone is trying to break into the server.

If the system enabled the general query log, then it logs messages for these types of problems.

If a client connects but later disconnects improperly or the system ended the connection, then

the server increments the aborted_clients status variable. The server then logs an ‘Aborted

connection’ message to the error log.

Here is how to view the number of aborted clients and connections:

mysql> SHOW GLOBAL STATUS LIKE ‘Aborted_c%’;
+-----------------------------------+------------+
| Variable_name | Value |
+-----------------------------------+------------+
| Aborted_clients | 3 |
| Aborted_connects | 8 |
+-----------------------------------+------------+

Connection errors

MySQL does an outstanding job of breaking down metrics on connection errors into different

status variables:

SHOW GLOBAL STATUS LIKE ‘Connection_errors%’;
+-----------------------------------+-------+
| Variable_name | Value |
+-----------------------------------+-------+
| Connection_errors_accept | 0 |
+-----------------------------------+-------+

19

| Connection_errors_internal | 0 |
+-----------------------------------+-------+
| Connection_errors_max_connection | 0 |
+-----------------------------------+-------+
| Connection_errors_peer_address | 0 |
+-----------------------------------+-------+
| Connection_errors_select | 0 |
+-----------------------------------+-------+
| Connection_errors_tcpwrap | 0 |
+-----------------------------------+-------+

Once all available connections are in use, attempting to connect to MySQL causes it to return a

‘Too many connections’ error and increment the Connection_errors_max_connections variable.

The best bet in preventing this scenario is to monitor the number of open connections and ensure

that it remains safely below the configured max_connections limit.

Fine-grained connection metrics such as Connection_errors_max_connections and Connection_

errors_internal can help to pinpoint the source of the problem. The following statement fetches

the value of Connection_errors_internal:

SHOW GLOBAL STATUS LIKE ‘Connection_errors_internal’;
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
| Connection_errors_internal | 2 |
+----------------------------+-------+

20

Here are two SQL Diagnostic Manager for MySQL screens that monitor Current Connections and

the Connection History, respectively:

SQL Diagnostic Manager for MySQL monitor: Current connection

SQL Diagnostic Manager for MySQL monitor: Connection history

21

Buffer pool usage

The default storage engine of MySQL, InnoDB, uses a special storage area called the buffer pool

to cache data for tables and indexes. The system categorizes buffer pool metrics as resource

metrics. Their main value is in the investigation rather than the detection of performance issues.

Configuring the buffer pool

You can configure various aspects of the InnoDB buffer pool to improve performance.

The buffer pool defaults to a small 128MB., one should increase the size of the buffer pool to

as high a value as is practical. At the same time, one should leave sufficient memory for other

processes on the server to run without excessive paging. That reserved memory typically amounts

to about 80% of physical memory on a dedicated database server. The larger the buffer pool, the

more InnoDB acts like an in-memory database, reading data from disk once and then accessing

the data from memory during subsequent reads.

Please note:

•	 The memory overhead of InnoDB can increase the memory footprint by about 10 percent

beyond the allotted buffer pool size.

•	 Once the system exhausted the physical memory, the system resorts to paging. Performance

suffers. Hence, database performance degrades while the disk input and output rises. Then, it

might be time to expand the buffer pool.

The system resizes the buffer pool operations in chunks. Also, one must set the size of the buffer

pool to a multiple of the chunk size times the number of instances:

innodb_buffer_pool_size = N * innodb_buffer_pool_chunk_size
 * innodb_buffer_pool_instances

22

The chunk size defaults to 128MB but is configurable as of version 5.7.5 of MySQL. Check the

value of both parameters:

SHOW GLOBAL VARIABLES LIKE “innodb_buffer_pool_chunk_size”;
SHOW GLOBAL VARIABLES LIKE “innodb_buffer_pool_instances”;

If querying innodb_buffer_pool_chunk_size returns no results, the parameter is not tunable in the

version of MySQL. One can assume the parameter to be 128MB.

To set the buffer pool size and the number of instances at server startup, invoke mysqld.exe with

the following parameters:

$ mysqld --innodb_buffer_pool_size=8G
--innodb_buffer_pool_instances=16

As of version 5.7.5 of MySQL, one can also resize the buffer pool on-the-fly via a SET command

specifying the desired size in bytes. For instance, with two buffer pool instances, one could set

each to 4GB by setting the total size to 8GB:

SET GLOBAL innodb_buffer_pool_size=8589934592;

Important InnoDB buffer pool metrics

One can access InnoDB Standard Monitor output using SHOW ENGINE INNODB STATUS. That

output provides several metrics about operating the InnoDB buffer pool under the BUFFER POOL

AND MEMORY section. Here is some typical content:

23

BUFFER POOL AND MEMORY

Total large memory allocated 2198863872
Dictionary memory allocated 776332
Buffer pool size 131072
Free buffers 124908
Database pages 5720
Old database pages 2071
Modified db pages 910
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 4, not young 0
0.10 youngs/s, 0.00 non-youngs/s
Pages read 197, created 5523, written 5060
0.00 reads/s, 190.89 creates/s, 244.94 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not
 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read
ahead 0.00/s
LRU len: 5720, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

A word about the InnoDB buffer pool LRU algorithm

To better understand what the above metrics mean, one should review how the InnoDB Buffer

Pool LRU Algorithm works.

InnoDB manages the buffer pool as a list, using a variation of the least recently used (LRU)

algorithm. When the system needs space to add a new page to the pool, InnoDB evicts the least

recently used page and adds the new page to the middle of the list. This ‘midpoint insertion

strategy’ treats the list as two sublists:

1.	 At the head, a sublist of ‘new’ (or ‘young’) pages that the system accessed recently.

2.	 At the tail, a sublist of ‘old’ pages that the system accessed less recently.

24

This algorithm keeps pages that the system uses heavily by queries in the new sublist. The old

sublist contains less-used pages. Such less-used pages are candidates for eviction.

With that in mind, here are more critical fields in the InnoDB Standard Monitor output:

•	 Old database pages: The number of pages in the old sublist of the buffer pool.

•	 Pages made young, not young: The number of old pages that the system moved to the head

of the buffer pool (that is, the new sublist). Also, the number of pages that remained in the old

sublist without being made new.

•	 Youngs per second non-youngs per second: The number of accesses to old pages that

resulted in making them young or not. This metric differs from that of the previous item in

two ways. First, it relates only to old pages. Second, the system bases it on the number of

accesses to pages and not the number of pages. There can be multiple access events to a

page. The system counts these access events.

•	 Young-making rate: Hits that cause blocks to move to the head of the buffer pool.

•	 Not: Hits that do not cause blocks to move to the head of the buffer pool.

The young-making rate and not rate rarely add up to the overall buffer pool hit rate.

Some MySQL performance tuning tips

One may see low values of youngs per second without performing large table scans. That may be

a sign that one needs to reduce the delay time for a block that the system moves from the old to

the new sublist. Alternatively, one may need to increase the percentage of the buffer pool used

for the old sublist.

If one does not see many non-youngs per second while performing large table scans (and lots of

youngs per second), then try tuning the delay value to be higher.

The innodb_old_blocks_time global variable specifies how long in milliseconds (ms) a page

inserted into the old sublist must stay there after its first access event before the system can move

it to the new sublist. If the value is 0, then a page inserted into the old sublist moves to the new

sublist the first time the system accesses it. That occurs no matter how soon the access event

occurs after insertion. If the value is greater than 0, then pages remain in the old sublist until an

access event occurs at least that many milliseconds after the first access. For example, a value of

1000 causes pages to stay in the old sublist for 1 second after the first access event before they

become eligible to move to the new sublist.

25

The following statement sets the innodb_old_blocks_time to zero:

SET GLOBAL innodb_old_blocks_time = 0;

The innodb_old_blocks_pct global variable specifies the approximate percentage of the buffer

pool that InnoDB uses for the old block sublist. Increasing the old sublist percentage makes it

larger. So, blocks in that sublist take longer to move to the tail, and the system evicts them. That

increases the likelihood that the system accesses them again and makes them young. The range

of values is 5 to 95. The default value is 37 (that is, ⅜ of the pool).

When scanning small tables that fit into memory, there is less overhead for moving pages around

within the buffer pool. So, one can leave innodb_old_blocks_pct at its default value, or even

higher, such as innodb_old_blocks_pct=50.

There are many other global status variables one can examine besides innodb_old_blocks_time

and innodb_old_blocks_pct:

SHOW GLOBAL STATUS LIKE ‘Innodb_buffer_pool%’;
Variable_nameValue

Innodb_buffer_pool_dump_status, not started
Innodb_buffer_pool_dump_status not started
Innodb_buffer_pool_load_status not started
Innodb_buffer_pool_pages_data460
Innodb_buffer_pool_bytes_data7536640
Innodb_buffer_pool_pages_dirty 0
Innodb_buffer_pool_bytes_dirty 0
Innodb_buffer_pool_pages_flushed1
Innodb_buffer_pool_pages_free7730
Innodb_buffer_pool_pages_misc2
Innodb_buffer_pool_pages_total 8192
Innodb_buffer_pool_read_ahead_rnd0
Innodb_buffer_pool_read_ahead0
Innodb_buffer_pool_read_ahead_evicted 0
Innodb_buffer_pool_read_requests15397
Innodb_buffer_pool_reads461
Innodb_buffer_pool_wait_free0
Innodb_buffer_pool_write_requests1

26

Of these, some metrics are more useful to one than others. Standouts include:

•	 Metrics tracking the total size of the buffer pool

•	 How much is in use

•	 How effectively the buffer pool is serving reads

The metrics innodb_buffer_pool_read_requests and Innodb_buffer_pool_reads are integral to

gauging buffer pool utilization. Innodb_buffer_pool_read_requests are the number of requests to

read a row from the buffer pool. Innodb_buffer_pool_reads is the number of times InnoDB needs

to perform read data from disk to fetch required data pages. Reading from memory is much faster

than reading from a disk. So, keep an eye out for increasing Innodb_buffer_pool_reads numbers.

One can calculate the buffer pool efficiency using the formula:

innodb_buffer_pool_reads/innodb_buffer_pool_read_requests*100= 0.001

Here is an example:

mysql> SHOW GLOBAL STATUS LIKE ‘innodb_buffer_pool_rea%’;
Variable_name Value

Innodb_buffer_pool_read_requests | 2905072850 |
Innodb_buffer_pool_reads | 1073291394 |

To calculate the InnoDB buffer pool efficiency:

(107329139 / 2905072850 * 100) = 37

27

Here, InnoDB is doing more disk reads. So, the InnoDB buffer pool is not sufficiently large.

Buffer pool utilization is another useful metric to check. The utilization metric is not available.

However, one can calculate it:

(Innodb_buffer_pool_pages_total - Innodb_buffer_pool_pages_free)
--
 Innodb_buffer_pool_pages_total

Here is an example:

SHOW GLOBAL STATUS LIKE ‘Innodb_buffer_pool_pages%’;
Variable_name Value

Innodb_buffer_pool_pages_data460
Innodb_buffer_pool_pages_dirty 0
Innodb_buffer_pool_pages_flushed1
Innodb_buffer_pool_pages_free7730
Innodb_buffer_pool_pages_misc2
Innodb_buffer_pool_pages_total 8192

Enter the numbers into our formula:

(8192 – 7730) / 8192 = 0.056396484375

We can convert that into a percentage by multiplying by 100:

0.056396484375 * 100 = 5.64% (Quite low!)

28

That the database is serving many reads from disk while the buffer pool is near empty is not

a cause for celebration. Perhaps the system cleared the cache, and it is still refilling. However,

should this condition continues for an extended amount of time, it is likely that there is plenty of

memory to accommodate the dataset.

High buffer pool utilization is not necessarily a bad thing either, as long as the system ages the old

data out of the cache according to the LRU policy.

Only when read operations are overpowering the buffer pool, should one think seriously about

scaling up the cache.

Converting buffer pool metrics to bytes

The system reports most of the buffer pool metrics as a count of memory pages. That is not all

that useful. It is possible to convert page counts to bytes. Using bytes makes it a lot easier to

determine the actual size of the buffer pool. For instance, this simple formula gives us the total

size of the buffer pool in bytes:

Innodb_buffer_pool_pages_total * innodb_page_size

One can retrieve the innodb_page_size using a SHOW VARIABLES query:

SHOW VARIABLES LIKE “innodb_page_size”

29

SQL Diagnostic Manager for MySQL offers the most useful buffer pool metrics at a glance

Conclusion

This whitepaper presents the top MySQL performance metrics. In particular, this whitepaper

showed that:

•	 It is crucial to monitor them effectively to keep the databases and applications running

smoothly.

•	 There are two essential categories of metrics: those that are most useful in identifying

problems and those whose primary value is in investigating problems.

30

•	 How often one monitors different aspects of the database depends on how mission-critical it

and the applications it supports are.

•	 There are two essential categories of metrics that pertain to performance: work metrics and

resource metrics.

•	 Both work and resource metrics include two types of metrics:

•	 Work metrics:

	 •	 Throughput

	 •	 Query execution performance

•	 Resource metrics:

	 •	 Connections

	 •	 Buffer pool usage

•	 There are two general MySQL status variables for measuring query execution: questions and

queries. Of the two, the client-centric view provided by the questions metric makes it easier to

interpret than the queries counter.

•	 MySQL provides a few options for monitoring query latency, including its built-in metrics

and performance schema. The tables of the performance_schema database within MySQL,

enabled by default since version 5.6.6 of MySQL, store low-level statistics about server events

and query execution.

•	 The events_statements_summary_by_digest table of the performance schema contains a

good deal of vital metrics. That table captures information about query volume, latency, errors,

time spent waiting for locks, and index usage.

•	 The sys schema contains interpretable tables for inspecting the performance data.

Further, this whitepaper focuses on database connections and buffer pool metrics. This

whitepaper showed how to capture and study MySQL metrics that provide the most value for the

effort. The main points covered include:

•	 The connection manager handles client connection requests on the network interfaces to

which the server listens.

•	 It is essential to monitor the client connections because (once the database server runs out of

available connections) the system refuses new client connections.

31

•	 Every time a client cannot connect, the server increments the Aborted_connects status

variable.

•	 Fine-grained connection metrics such as Connection_errors_max_connections and

Connection_errors_internal can help to pinpoint the source of connection problems.

•	 The default storage engine of MySQL, InnoDB, uses a particular storage area called the buffer

pool to cache data for tables and indexes.

•	 The system categorizes buffer pool metrics as resource metrics.

•	 One can configure various aspects of the InnoDB buffer pool to improve performance.

•	 InnoDB Standard Monitor output provides several metrics about operating the InnoDB buffer

pool.

•	 The LRU algorithm uses a midpoint insertion strategy that treats the pages as old and new

sublists.

•	 One can tune the LRU algorithm using the innodb_old_blocks_time and innodb_old_blocks_

pct global variables.

By tracking the most useful metrics and reviewing them in the most informative ways, one

balances over-monitoring and unforeseen firefighting crises.

32

About the author

Shree Nair is Director of Technology Partnerships at IDERA. He has an exceptional track record

in innovation, partner management, solution development, and global team leadership. Shree is

the former product manager of Webyog’s MySQL tools. Under his direction, Webyog performed

a complete overhaul of the product and business systems to target a wide range of industries

worldwide and expand the customer base beyond 30,000 customers. Shree believes monitoring

MySQL should be easy. He seeks opportunities to make MySQL user’s life easy. He earned a

Master’s at Coventry University, England.

SQL Diagnostic Manager for
MySQL
With SQL Diagnostic Manager for MySQL, monitor MySQL and MariaDB performance in real-

time. This powerful tool helps database administrators pinpoint the cause of MySQL performance

problems in physical, virtual, and cloud environments.

Proactively find and fix MySQL performance problems:

•	 Improve performance by optimizing bad SQL queries.

•	 Gain visibility into overall health and performance.

•	 Alert proactively on potential performance problems.

•	 Take action before MySQL powered systems run out of resources.

•	 Get a high ROI with increased DBA productivity and server performance.

“sQL diagnostic manager for mysQL is very intuitive, and it makes database administration easy.”

olu efonwoye, database administrator, icf corporation (small business, Telecommunications

services, Usa, 10 to 24 mysQL databases)

https://www.idera.com/productssolutions/sql-diagnostic-manager-for-mysql?utm_source=whitepaper&utm_medium=inasset&utm_campaign=sdm-mysql
https://www.idera.com/productssolutions/sql-diagnostic-manager-for-mysql?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=sqldiagnosticmanagerformysql

IDERA.com

33

Start for FREE

Unlike its competition, SQL Diagnostic Manager for MySQL provides:

•	 Agentless monitoring with no additional load on servers

•	 Over 600 monitors and advisors

•	 Custom dashboards, charts, and monitors

•	 Real-time tracking of locked and long-running SQL queries

•	 Display of top 10 problematic SQL queries across servers

•	 Monitoring and comparison of configuration changes

•	 File-based log monitoring for Amazon RDS for MySQL

https://www.idera.com/productssolutions/sqlserver/sqlsafebackup/freetrialsubscriptionform?utm_medium=inasset&utm_source=casestudy&utm_campaign=sqlsafe
https://www.idera.com/productssolutions/sql-diagnostic-manager-for-mysql?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=sqldiagnosticmanagerformysql#getStartedForm

