
1

Database Tools Whitepaper
®

ready, set,
load test
Best Practices, Tools, and
Tricks for Determining
Database Performance
under Pressure

table of contents

2

Introduction ... 3

Is stress a bad thing? Not for pre-production Apps 4

How and when to test ...5

Oracle enterprise manager and SQL monitor ...8

Load testing and the developer ... 10

An alternative to manual code testing ...11

 Oracle database reply ..11

 SQL server distributed replays ...14

 Idera DB optimizer ... 15

Best practices for SQL load testing .. 16

 Start early ...17

 Automate deployment of test environment ..17

 Script out and automate transaction flows ...18

 Consult the business ... 19

 Run your script .. 19

 Expect problems, and try to cause them .. 19

 Go back to the drawing board .. 20

Profiling and instrumentation ... 20

Combining load testing with profiling ... 21

Conclusion... 23

3

INTRODUCTION

In software engineering, developers use load testing to determine the speed of

various aspects of a system as it executes typical transactions under a specified

workload. Developers often use load testing to validate or verify certain system

attributes or capabilities, including scalability and reliability.

However, today’s complex applications execute hundreds of SQL procedures

and maybe thousands of SQL statements during a typical workload. If the

application is being used concurrently by multiple users beyond expected

capacity, potentially untested conditions could occur, causing performance

degradation. If the slow-performing application is a business-critical one used

within an organization, performance issues can have a major impact on employee

productivity. Underperforming applications are especially frustrating to users—

especially customers.

Automated software quality (ASQ) assurance is a segment of the application

lifecycle management (ALM) market that addresses some of these issues. ASQ

assurance includes test management, automated functional and regression

testing, and automated stress and load testing. In this paper, we’ll talk about why

stress and load testing are a critical part of the development lifecycle. We’ll also

talk about industry trends and outline some best practices for successful stress

and load testing. Finally, we’ll examine how load testing can be combined with

profiling to provide greater insight into application performance during code

development, allowing developers and DBAs to eliminate some of the costly SQL

code errors that can ultimately impact time-to-market and a company’s bottom

line.

4

IS STRESS A BAD THING? NOT FOR
PRE-PRODUCTION APPS

Developers perform load testing to determine how their code will behave under both normal

and anticipated peak load conditions. In theory, such testing simulates possible scenarios that

will occur when the application is in production and being used by users, illuminates bottlenecks

or bad performing code, and gives the developer an opportunity to tune and improve the code

before it causes problems in production.

Placing a load on a system or application that is higher than predicted normal usage patterns is

called stress testing. During stress testing, developers expect to find problems. In other words, the

more stress you put on a system, the more likely it is you’ll find problems—and this is the intent.

The tester can never be sure where the tipping point will be, or when the system will be over-

taxed, so he must perform many tests with increasing load volumes to discover the application’s

true limitations.

For example, a developer may write a query to pull results back from a search performed with

an online search engine. The search executes and seems to work well. However, the developer

expects several people to be performing similar searches at the same time, perhaps for the same

topic or item. The query may be fast if one person is executing it, but what if 100 people execute

it simultaneously? Google found that even 500ms of extra latency reduced search traffic by 20%.

Stress-testing the query before production helps to eliminate this risk.

Load testing is absolutely critical for applications that experience peak load times. For example,

during the holidays, a popular retail store may need to process higher than average online

transactions. If the code is inadequate, the system could slow to the point of frustrating shoppers,

causing them to abandon their shopping carts and purchase elsewhere. This could lead to lost

revenue and a damaged brand image.

SQL load and stress testing help developers identify potential bottlenecks and give them a

chance to address them before the code goes into production. This shortens the development

cycle, because individual lines or batches of code can be fixed before being integrated with the

rest of the application, eliminating the time-consuming “needle-in-a-haystack” approach of going

through thousands of lines of code to find a single statement that’s causing the issue. Moreover,

load testing during development creates accountability for code contributors and helps to remove

some of the blame from DBAs. Typically, the database is the key suspect in slow application

performance; load testing during development removes such finger-pointing and shifts the

responsibility back to the folks developing the code. And, the results of pre-production load tests

can be used by developers as proof that their code contributions are not causing performance

problems later on.

5

HOW AND WHEN TO TEST

Clearly, load and stress testing are an important part of application development, but the question

is, how do you do it? A stress test involves simulating a true production environment before the

code is final, and pummeling your pre-production code with increasingly high transaction volumes;

how do you do that when you don’t have data, and when you don’t have thousands of users

in-house to run the application simultaneously? To make things even more complicated, some

countries have data privacy rules that prevent exposing real data to the test environment.

Load or stress testing can be performed manually, and developers have done it this way for years.

But manually testing a system’s performance is tedious and costly, and consumes a lot of time and

resources. For example, a developer may create a load test by writing a small code block, such as

Oracle PL/SQL as follows:

declare
 v_start date;
 v_stop date;
begin
 v_start:=sysdate ;
 for i in 1..10000 loop
 SELECT ...
 FROM ... ;
 end loop;
 v_stop :=sysdate ;
 dbms_output.put_line(‘10000 iterations elapsed time:’||to_char(v_
stop - v_start)) ;
end ;
/

This simple code block would execute the SQL statement 10,000 times and capture the total

elapsed time it takes to complete. However, this type of test isn’t really a valid load; it’s simply

an iterative execution. To produce a load, you would have to run this code block in multiple,

independent sessions— simultaneously.

Start by saving the code block with the file name “int_exec.sql”. Then you could create some

number of connected sessions and execute the code block in each at approximately the same

time. Or considering automating the test by writing a shell script or some other “driver” program to

create the session connections and execute the code. Then, you could add instrumentation to the

code to get additional details about the code’s performance during the test.

6

We would want to create a Shell “wrapper” script to ease automation of the code. To do this we

would execute multiple sessions of the same shell script to create concurrency:

#!/bin/ksh
export sqlplus /nolog << EOF CONNECT username/password@db
SPOOL /u01/int_exec.lst
SET LINESIZE 100
SET PAGESIZE 50
@int_exec.sql;
SPOOL OFF
EXIT;
EOF

To perform the same on a Windows environment, we would use the preferred method of

PowerShell as seen below. The script would pull the username and password from variables

stored for the user’s environment. The script could be executed by as many processes as

required to create the concurrency scenario.

$sqlQuery = @” int_exec.sql; exit”@ 	
$SQLPrompt = @”$username/$password”@		
$outputfile = “C:\int_exec.txt”

	

$sqlOutput = $sqlQuery | sqlplus -silent
$SQLPrompt
EXIT

While the developer could query views to monitor performance, such as:

•	 V$ACTIVE_SESSION_HISTORY

•	 V$SESSION

•	 V$SESSION_LONGOPS

•	 V$SQL

•	 V$SQL_PLAN

7

It can ease the demand and the manual processing by using a prebuilt package supplied by

Oracle, such as DBMS_SQL_TUNE. To perform this from the command line if Enterprise Manager

is unavailable for SQL Monitor access, the tester can gather the following as they are performing

their test cases:

1.	G ather the information collected during the testing process using DBMS_SQL_TUNE

logged in with SQL*Plus:

SET LONG 1000000
SET LONGCHUNKSIZE 1000000
SET LINESIZE 1000
SET PAGESIZE 0
SET TRIM ON
SET TRIMSPOOL ON
SET ECHO OFF
SET FEEDBACK OFF

SPOOL <path>/report_sql_monitor_list.htm
SELECT DBMS_SQLTUNE.report_sql_monitor_list(
 type => ‘HTML’,
 report_level => ‘ALL’) AS report
FROM dual;
SPOOL OFF

2.	G ather the SQL_ID, the unique identifier for the query:

select sql_id, substr(sql_text,1,200) sql_text
 from v$sql
 where upper(sql_text) like ‘<insert unique text from query>’ ;

Note** If a comment is used such as “/* initials_testing */” this can simplify identifying your test

query.

Use the SQL_ID gathered in the query above and provide a detailed report regarding the test

query:

8

SET LONG 1000000
SET LONGCHUNKSIZE 1000000
SET LINESIZE 1000
SET PAGESIZE 0
SET TRIM ON
SET TRIMSPOOL ON
SET ECHO OFF
SET FEEDBACK OFF

SPOOL /host/report_sql_detail.htm
SELECT DBMS_SQLTUNE.report_sql_detail(
 sql_id => ‘<SQL_ID from query>’,
 type => ‘ACTIVE’,
 report_level => ‘ALL’) AS report
FROM dual;
SPOOL OFF

The report can be transferred to the tester’s desktop with FTP or SCP and viewed with a browser

to inspect the performance of the test and any issues.

ORACLE ENTERPRISE MANAGER AND
SQL MONITOR

There are multiple profiling tools, but two offered from Oracle collect execution time and metrics

surrounding the performance of the process. Oracle SQL Monitor requires the Oracle Database

Tuning Management Pack, but if available, is the preferred method to collect execution time and

summary of metric data.

Using Oracle’s Enterprise Manager, direct access to SQL Monitor can be attained, once logged

into the database, by clicking on Performance → SQL Monitoring. To use SQL Monitor, ensure your

user has the required privileges as a developer. Please refer to Oracle’s documentation for more

information on the requirements.

9

From the list of processes listed, you can see which ones are active, along with the execution

time, the SQL IDs, if the process is utilizing any parallel and the amount of IO (blue), CPU (green),

and further breakdown of IO Requests (reads and writes).

The SQL ID for each process is also a link to access deeper details about the process. Double

click on your process, (not the SQL Text in the furthest right hand column) and the SQL Execution

Monitored Details page will result.

For the SQL ID in question, information will be displayed for execution time, wait events, and the

execution plan for the SQL in question.

10

LOAD TESTING AND THE DEVELOPER

Developers spend a lot of time testing features and functionality, and neglect performance testing

altogether, handing off potentially poorly performing code to production. As a result, load testing is

typically a step that occurs after they’re done and before the production release—either by a QA

team or designated tester. If the load testing reveals an issue with some code’s performance, then

the code must be given back to the developer for modification.

The DBA may also perform load testing using the same methods as the developer; however,

he usually isn’t responsible for it. Most organizations have a division of duties when it comes to

application development and testing, and post-production code maintenance and performance

monitoring. DBAs typically fall into the second category. They need tools that can identify

code issues quickly—ones that gather diagnostic data about “bad” application code from their

production environments. Such tools help them determine if a problem is caused by too much of

the same thing running concurrently or by “bad code.”

If a DBA finds “bad code,” he may try to find a way to mitigate or circumvent the problem. For

example, in Oracle, he can create a SQL profile or baseline to produce a better execution plan for

a specific statement. In other words, he creates a temporary fix to stop the bleeding in production.

While he’s doing this, he may send the problem code back to the developer for a long-term fix—

but that can take time. Often, developers have a hard time determining what needs to be done to

fix poorly performing code, and it can be a guessing game. They try something, send it back into

production and cross their fingers that it works. The closer the two groups can work together and

collaborate, the more efficiently the problem can be solved.

The earlier performance testing is injected into the development lifecycle, the easier it is to modify

poor design choices and correct them. Otherwise, it can cost a lot of time and money to rework

code that’s already been released—time and money that could have been saved, if only time had

been taken early in the process for thorough performance testing.

A developer can test his own code, then move to integration testing to see if code works with

other modules. Later in the development cycle, he may choose to test how his code performs

when interacting with other functions. For example, in an insurance system, the refund and

cancellation systems need to interact smoothly. Once the code is working as expected, the

developer can then move on to testing various user scenarios to ensure the application performs

the business function that was promised.

11

AN ALTERNATIVE TO MANUAL CODE
TESTING

Automated load testing tools are designed to simulate the load of multiple users against a server-

based application to understand performance and give developers an opportunity to tune code

before it goes into production. Especially in the late stages of product development, automation

is necessary for effective performance testing, because full-scale application load tests cannot be

carried out properly or in a timely manner without it.

Efficient automated load testing tools will launch multiple transactions, or threads, through a single

system at once. Some tools are complex and have modules that can test various aspects of a

system, while others are focused on testing specific functionality, such as SQL code performance.

SQL code developers may have more success with a focused tool that is built for evaluating and

fine-tuning pre-production SQL queries.

Products from vendors like Microsoft and Oracle provide workload replay features that can

enhance the testing process to ensure that production workloads are taken into consideration

when testing performance in a non-production environment. The examples explained below

provide guidelines for using these features and offer an opportunity for the tester to provide more

complete test cases and performance analysis.

ORACLE DATABASE REPLAY

Oracle Database Replay provides the ability to capture database workloads and replay them in

development, test, and other copies of the original database environment. This feature is part of

the Real End-User Testing product from Oracle and requires added licensing costs.

If the tester has Oracle’s Enterprise Manager at their disposal, the graphical interface allows the

user to bypass the manual preliminary steps or command line execution to collect workload

information.

If the tester is without Enterprise Manager, Oracle’s Workload Analyzer must be run before the

Database Replay to ensure all requirements are configured and to identify any code that won’t be

included in the capture. The target database the workload is to be run on, including the analyzer,

must be a duplicate of the original database the workload was captured from. This can be done

via a RMAN duplicate, a snapshot, import and export, etc.

Oracle’s Workload Analyzer is a Java program used to identify sections of a captured workload

that won’t replay accurately due to errors during the capture or due to incorrect or insufficient

12

data. There are additional features that may not be supported by Database Replay that are also

identified with this product and it’s important to identify and isolate these areas before replaying

the workload to understand what will be included in the replay, its impact and/or failure.

An example of a Workload Analyzer command, can be seen below. Note that the java path has

been set as part of the environment settings beforehand.

java -classpath
$ORACLE_HOME/jdbc/lib/ojdbc6.jar:$ORACLE_HOME/rdbms/jlib/dbrparser.
jar:
$ORACLE_HOME/rdbms/jlib/dbranalyzer.jar:
oracle.dbreplay.workload.checker.CaptureChecker /scratch/capture

jdbc:oracle:thin:@myhost.mycompany.com:1521:orcl

With the execution of this command, the user will be required to insert the username and

password for a user with execute privileges on DBMS_WORKLOAD_CAPTURE and the SELECT_

CATALOG role.

To capture a workload on the production database, the DBA should have a workload directory set

up to house the workload capture.

$mkdir /u01/app/oracle/admin/<directory>/capture

Log into the database the workload will be created in and begin by adding the directory at the

database level:

$sqlplus / as sysdba
<create or replace directory capture_dir as‘/u01/app/oracle/
admin/<directory>/capture’;>

Once this is set up, enabling the workload capture is simple from the command line:

@$ORACLE_HOME/rdbms/admin/wrrenbl.sql;

13

The capture will then commence and once finished, the capture will need to be properly disabled

by running the following script from the command line as the same user with the appropriate

privileges as discussed previously:

@$ORACLE_HOME/rdbms/admin/wrrdsbl.sql;

Once completed, the binary workload file must be transferred via FTP, SCP or other method to the

destination server and the replay directory.

Create the working directory on the new database, (if it doesn’t already exist):

$sqlplus / as sysdba
<create or replace directory capture_dir as ‘/u01/app/oracle/
admin/<directory>/capture’;>

$scp oracle@<ip address of host> /u01/app/oracle/admin/<directory>/
capture/

Once the file is transferred, then there are a number of preliminary steps, such as user and

connection remapping that must be completed. This offers the ability to execute the same

workload as is commonly performed in the production environment, allowing for time to analyze,

fix issues and test repeatedly.

The simplest method of replaying the workload is to use Enterprise Manager which offers a simple

user interface to access the file and run the replay. If the user doesn’t have this available, an API

can be utilized to define filters, timeouts, options and to start, pause and resume the replay as part

of testing.

Run the workload and perform the next series of tests:

<exec dbms_workload_replay.initialize_replay (‘REPLAY_
DEMO_4’,’CAPTURE_DIR’);>
<exec dbms_workload_replay.prepare_replay;>
<exec dbms_workload_replay.start_replay;>

The status of the database replay can be checked with the following command from SQLPlus:

14

<select id, name, status, duration_secs from dba_workload_replays;>
 ID NAME STATUS DURATION_SECS
---------- -------------------- ----------- -------------
18 REPLAY_DEMO IN PROGRESS 1089

When you have completed the workload replay, you can remove all this overhead from the system

by running the following command from SQL Plus, using the Replay ID from the previous query:

<exec dbms_workload_capture.delete_replay_info(18);>

Oracle’s Database Replay has significant features from the End User Testing interface and even

more from the command line. For a more detailed description and examples from the product,

reference the official documentation.

When you’re using a more complex, multifunction tool, you might find yourself waiting until late

in the development cycle, when more components are already integrated into the system. If a

problem occurs, finding the source of the issue may require reverse engineering as you manually

sift through individual SQL statements to find poor-performing code.

SQL SERVER DISTRIBUTED REPLAY

SQL Server also has an interesting feature called Distributed Replay. It helps to assess the impact

of the hardware and operating system upgrades during the future SQL Server Upgrades. If you

are into SQL Server performance tuning, you can also take advantage of this feature to gain lots of

insight which is not always easily available.

Though SQL Server Distributed replay is a very feature-rich and powerful tool, it is not very widely

used because of its similarity with SQL Server Profiler. However, many do not know that the

biggest limitation of the SQL Server Profiler is that it can replay the workload from only a single

computer, whereas SQL Server Distributed Replay actually overcomes that limitation.

The biggest advantage of the Distributed Replay is that it can replay a workload from multiple

computers and efficiently and easily. It is one of the most important tools to check compatibility of

testing and capacity planning.

If you are a SQL Server performance tuning expert, you can use this tool to test operating system

upgrades, hardware upgrades, or even index tuning scenarios. The biggest advantage of using

15

this tool is the concurrency in the captured test is so high that a single replay client cannot

sufficiently simulate it.

The Distributed Replay administration tool, controller, and client can be installed on different

computers as well as on the same computer. This gives the product robustness to scale to

perform a larger load testing.

Here is a diagram of the architecture of SQL Server Distributed Replay Utility.

IDERA DB OPTIMIZER

IDERA offers a database query tuning tool called DB Optimizer, and it’s the most powerful

yet simplest database performance tool on the market. The Load Editor provides SQL stress

testing that simulates a number of parallel users and executions over a specific period of time

or execution cycle. The SQL code can be run in the Load Tester to test execution by multiple

concurrent users. User load testing is very often done by just one single user, and then problems

don’t appear until production use with multiple concurrent users. Concurrent user testing is a

breeze in DB Optimizer.

16

The integrated Profiler can be run while the Load Tester is executing to show clearly the impact

on the database. You can continuously profile an entire data source within a configurable

span of time. When fine tuning or testing SQL, you can profile the execution of a single stored

routine when profiling an entire data source is not desired. Finally the Profiler can be run on any

production database to clearly show load, bottlenecks and sources of bottlenecks or resource

consumption.

Data is displayed in real-time while profiling is in progress. All data and metadata pertaining to a

profile session can be saved as a single entity into an archive file. Profiles can be shared across

multiple workspaces and machines for collaboration purposes.

BEST PRACTICES FOR SQL LOAD
TESTING

With the extensive adoption of Agile development methodologies, numerous tools to both ease

and automate SQL load testing have been introduced in recent years. The scope of the SQL load

testing will decide which tool satisfies the requirements. Tools that focus on SQL development will

often be easier to use as they are focused on this purpose, but many multi-functional load testing

tools may offer broader opportunities for automation and other DevOps practices that are key to

successful Agile development.

17

There are numerous methodologies on proper load testing; however, your methodology can

affect time-to-market and overall project costs. Let’s look at what the experts are doing to test and

document the performance of their SQL, and consider some best practices for minimizing code

changes late in the development cycle.

START EARLY

Using a tool that’s focused on SQL allows you to begin testing earlier in the development cycle.

For example, you can determine a single query’s maximum load by having it execute thousands

of times, finding any problems, and then tuning it until it performs as intended. Then, you can

produce a report to present to your DBA that shows the code passed performance testing and is

production-ready. This eliminates finger-pointing, because you have proved your code, by itself,

is healthy. Additionally, early testing eliminates potential problems later in the development cycle

that may have been caused by poor-performing individual SQL queries.

AUTOMATE DEPLOYMENT OF TEST ENVIRONMENTS

Developers typically mock up their data for testing purposes, rather than testing performance

using actual data. With the introduction of the General Data Protection Regulation (GDPR), there

are significant laws in place to prohibit using authentic data for testing, but it’s generally unwise

to use Personally Identifiable Information (PII) for testing. It’s important to have the right amount

5 Steps to Effective Load Testing

•	 Start Early

•	 Automate deployment of test enviroments

•	 Automate the test cases and flow

•	 Consult the business

•	 Run, refine, repeat

18

of data for the test to yield viable results, but not enough to make a company liable to fines,

which can impose up to 4% annual revenue. For example, if you’re running selects against a

large database, a bad select can cause more issues as SQL volume increases. If the database is

too small, and you’re testing update functionality, you may find fewer collisions occur than would

actually occur in a production environment.

To produce relevant results, a good rule of thumb is to construct a test database that is roughly

25% to 50% the size of the target database, even better if it includes the ability to virtualize

(offering the full data set, but without the storage requirements), and to utilize data masking to

protect from critical data vulnerabilities.

SCRIPT OUT AND AUTOMATE TRANSACTION FLOWS

After you’ve selected your tool and built your test database, you must capture the activity on your

system and review it to determine a typical workload. Then, create a script for performing the

expected user transactions. Consider the following:

•	 What are your most critical business processes and how often are they processed?

(e.g. number of sales activities per day, number of client requests per day, etc.)

•	 What is the typical user behavior for the application?

•	 What are the typical keystrokes a user will choose during the transaction?

•	 In what order will processes execute?

•	 What are acceptable response times for the application?

•	 How many concurrent users do you expect?

•	 Will there be peak usage times? What processes will be affected the most?

Many automated tools will capture this information for you and may even have an automated

function for creating the script. All you have to do is execute the transaction, and the tool does the

rest. You should be able to script a workload in numerous ways to mimic how different types of

users may use your system.

19

CONSULT THE BUSINESS

The developer bridges the gap between the user and the business; he must understand the

code and how it executes, what the user will experience, and whether the application meets the

needs of the business. Much of the information he needs to build a test script for the application

comes from the business. In other words, the business need informs the test method. If a retailer

needs an order entry system to run optimally during the week before Christmas, and they’re

estimating 1000 orders per minute, the developer needs to incorporate those parameters into his

test methodology. He’ll want to make sure the system can handle 1000 transactions per minute

without performance degradation.

RUN YOUR SCRIPT

Once you have the script, devise a testing strategy. Testing isn’t simply running the script and

recording performance; you must simulate the production environment. Vary the order of

transactions and tasks, just as if multiple users were using the system without knowledge of

the proper workflow. Inevitably, different users will have different approaches to completing

transactions. Also, start with a small number and work up to larger transaction volume so you can

determine at what point problems occur. Most load testers will “warm up” the system by testing

one user, then 20, then 50, then 100 and so on. By ramping up a workload, you can mimic an

increasing number of users doing a representative set of tasks and capture information about

how long it took each task to execute. This approach makes it easier to identify the code that

caused the system to slow down or crash. You can also determine which transactions will scale

successfully as your workload increases, and which ones won’t.

An efficient load testing tool will allow you to mark start and stop times for transactions, and create

graphical representations of various metrics, such as average response time by transaction.

EXPECT PROBLEMS, AND TRY TO CAUSE THEM

Profiling helps to filter out well-performing light-weight SQL and collects information on heavy-

weight SQL. SQL code that is heavy-weight is usually either long-running queries or queries that

are short but run so often that they put load on the database. The idea is to look at the load on the

database which can quickly indicate how the database is functioning.

The whole point of load and stress testing is to find the problems so they can be fixed. Be

suspicious if no problems occur. Refine your test so that it runs a higher transaction volume, or

continue to vary the order of the tasks in the script. You’re not testing to make sure the system

20

works; you’re stressing the system to find out where it breaks. Find the breaking point and decide

whether your system will actually experience those conditions in a production environment. If it

won’t, then you’re safe. If it will, you need to…

GO BACK TO THE DRAWING BOARD

Here’s where the hard work begins. Using the data collected during testing, you must determine

what needs to change. Some tools allow you to fine-tune SQL code without leaving the testing

environment. This method is extremely efficient, since you can easily reference test results during

tuning, then re-run the script against the new code.

PROFILING AND INSTRUMENTATION

An important decision to make is whether to build instrumentation into your code. Instrumentation

refers to the ability to monitor or measure performance, diagnose errors, and write trace

information using code instructions. Programmers use instrumentation to monitor specific

components in a system.

Oracle systems, for example, have built-in procedures that allow for the labeling of sections of

code (i.e. a single statement, a group of statements, or a transaction). Examples of labels in a retail

application may include “order entry,” “insert order,” or “update quantity.” After the test runs, the

developer can apply filters to view the behavior of the labeled code. For instance, he can easily

see how much time each “order entry” transaction consumed.

With instrumentation, you can build code tracing into the application and receive messages about

how the application executes. It allows the developer to track down and fix programming errors.

Other forms of instrumentation include performance counters that track application performance,

and data logging, which helps track major events while the application runs.

Instrumentation is often used to perform profiling functions. Profiling technologies measure

program behaviors during testing and gather information about what resources are used for

various transactions within an application. Similar to instrumentation, a developer can use profiling

to look at I/O times or CPU times, or to find where the application is wasting time. Profiling

technologies use algorithms or other mathematical techniques to discover patterns or correlations

in large quantities of data.

21

Another way to perform profiling is by using an automated tool called a code profiler to analyze

the binary executable of an application’s source code. After running a load test, you can examine

the profiles to identify trends or anomalies—anything that might signify a problem with the code.

Profilers are often separate tools that must be used in conjunction with load test tools. It’s

important to have both capabilities—the load test tool can only see a single transaction, even

though there may be hundreds of SQL statements executing behind the scenes. With a profiling

tool, you have very granular insight into the code as it runs. The profiler monitors what’s going

on during the load test, so you can correlate slow response times with exact SQL statements

and pinpoint the bottleneck. Filters within the profiler help you pull out the information you need

quickly and efficiently. For example, you can ask to see transactions performed by a specific time

period or action. If the peak load occurred at 2:30pm, you can filter the data for transactions that

ran at 2:30, and see details about how the code performed.

COMBINING LOAD TESTING WITH
PROFILING

In practice, load testing and profiling should go hand in hand. With Oracle’s Real User Database

Testing, much of the load testing and profiling is performed for the tester. IDERA DB Optimizer also

provides integrated load testing and profiling capabilities that can be used with multiple database

platforms.

If you’re new to profiling, as a test runs, the profile measures the results. Without profiling, the

best a load test can do is measure performance; it can only identify problematic transactions,

not individual lines of code, and there’s no real way to find the true culprit of the performance

problem.

Combining load testing with profiling provides a holistic approach to performance testing, but

previous manual methods could be resource and time intensive. Newer automation tools allows

fewer testers to do more and to do it more effectively.

Full profiling with monitoring allows you to not only look at the performance of lines of code, but

see how other processes may interact with code to cause longer wait times. For example, if you

run a load test on a query that brings back product information, you can profile the database

first and then run the load test. Watching the profiling session as the test is running allows you

to see in real time what’s going on during the transaction. You can also see if other actions

22

have repercussions on the query. Running the test without a profiler may give you a false sense

of security. Profiling shows exactly how your code affects the database, and whether other

processes running on the database are affecting the performance of the query.

With many companies’ testing tools, like we’ve shown with IDERA DB Optimizer, Oracle Database

Replay, SQL Server Distributed Replay, and SQL Monitor, these tools are incorporated into one.

You can use the profiler function within the load test tool to watch the test while it runs. If you see

performance start to degrade, you can capture the exact statement that’s running in real time.

Then you can pull that statement into a tuning session, improve the code, and, before putting

it back into production, test it individually to verify that the new code will scale out. Once you

complete the load test on the new code, you can integrate it into the application, and start over.

This method of code tuning is far superior to running a load test late in the development cycle

with a complex tool, manually sifting through hundreds of transactions and lines of code to find

the problem SQL statement, taking that code out of the test environment to fix it, then having to

re-integrate the code, without any guarantee that you didn’t introduce a new problem during the

tuning session. Additionally, having both capabilities in a single tool eliminates integration costs

and reduces the amount of capital outlay.

DO’S AND DON’TS

Do understand the business needs before defining your test methodology.

Do look for a tool that provides integrated load testing and profiling functionality.

Do test often throughout development.

Do work to add instrumentation and automation to all testing.

Do
use a test database that’s as close to production size as possible and mask

critical data to protect for GDPR, HIPAA, etc.

Don’t load test without profiling.

Don’t test the app to make sure it works; test it to find problems.

Don’t leave performance testing until the last minute.

IDERA.com

23

CONCLUSION

The days of building an application and rolling the dice are over. Performing load and stress

testing early, and often, in the development cycle, gives developers more control over the quality

of their code, and confidence that it will perform as expected once it’s integrated with the rest of

the application.

However, before choosing a methodology for load testing, it’s important to consider how the

application will be used, what it will be used for, and how many concurrent users may stress the

system at peak load. Especially for applications that must scale to serve thousands of users or

more, automated load test tools save development teams time and money by eliminating manual

tasks and providing greater accuracy. The best tools integrate both testing and profiling functions

to simplify and streamline the process of identifying and tuning poorly performing code, helping to

accelerate development and time-to-market with high-performing applications that can withstand

even the most strenuous use cases.

ESSENTIALS OF AN EFFECTIVE LOAD TESTING TOOL

Automated Load Testing

Simulate production environments by

efficiently running SQL statements hundreds

of times and in parallel.

Database Profiling

Locate database bottlenecks immediately

and identify poor SQL code for immediate

performance resolution.

Reporting

Create organizational transparency with

analytical reports containing context on both

performance issues and solution testing.

Integrated Capabilities

Eliminate integration costs of multiple tools

and increase productivity with all essential

components in one application.

