
Azure SQL Database Whitepaper®

AZURE SQL
DATABASE
ARCHITECTURE
BY HERVE ROGGERO

SUMMARY

INTRODUCTION

Although most developers and administrators can use Azure SQL Database
(SQL Database) without understanding its underpinnings, it can
be useful to study some of its underlying architecture to better understand
how to manage your databases and how to adopt this technology properly
in your custom application development initiatives. This white paper gives
you a glimpse into the internal architecture of SQL Database and brings
to light to some of the key concepts that SQL Database is built on.

This white paper introduces you to Azure SQL Database, the Platform as a
Service database service o�ered on the Microsoft Azure cloud. Originally
called SQL Azure, Azure SQL Database has evolved significantly over the
years and has become a robust and highly available database platform
wrapped as a service o�ering with specialized security features.

If you have ever used SQL Database you already know how simple it is to
use this relational database platform. Creating a database instance in SQL
Database is as simple as pushing a few buttons, and within minutes you
can have a fully supported, production-ready database infrastructure at
your fingertips. Ser However you may wonder how this technology is put
together; you may even ask yourself how Microsoft is able to guarantee
high availability, or what the master database really is in a SQL Database,
or even how the built-in connection firewall is implemented behind the
scenes, both at the server and database level.

In order to gain a better understanding on how this infrastructure works,
this white paper will give you a tour of SQL Database from an architecture
point of view and provides a summary of the key features of the database
platform.

Note that Azure SQL Database was previously called SQL Azure. What
was previously known as a SQL Azure database is now called a SQL
Database instance.

SQL DATABASE TOPOLOGY

ABOUT MASTER

Let’s start with the underlying infrastructure. SQL Database is made up up of a layer of routers, firewalls, servers and services that

together provide a unique database service. When a connection request is sent to a SQL Database, it is actually handled by a proxy

layer through a series of gateways that perform login validation, enforce security constraints such as firewall rules and denial of

service attacks, and additional services like billing and provisioning.

Once the TDS (Tabular Data Stream) request is validated by the proxy layer, it is forwarded to the server that contains the database

initially requested. So, the client sending the original request is not communicating directly with the server holding the database; it is

going through the proxy layer that determines dynamically where the database is actually located at the time of the request by

looking up an internal mapping table. This dynamic database routing mechanism allows the SQL Database infrastructure to move the

database instances on other servers at any time to account for hardware failures and load distribution.

Because your SQL Database instances are not stored on the same machine, you may wonder where your master database resides

and what you can do with it. The master database is in fact a virtual database; it is handled by the Gateway layer where the general

SQL Database Server security settings are defined. This explains why the master database is read-only in SQL Database. This also

explains why you need to connect to the master database (i.e. the Gateway layer) in order to create additional databases.

The server-wide firewall settings of SQL Database are also stored in master, at the Gateway layer. This also explains why changing

firewall settings takes e�ect relatively quickly, because the Gateway layer is responsible for enforcing the firewall rules as well.

Simplified SQL Database Topology

ABOUT SQL DATABASE INSTANCES

Last but not least, the Gateway layer also handles database provisioning, stores audit logs, and keeps summary information of

bandwidth usage. As a result, the billing details are also provided by the Gateway layer and can be visible by querying the master

database.

The current version of SQL Database is V12, which is a special build of SQL Server 2016. When you create a new server, a DNS entry

is made so that the server is available from the Internet (once the firewall is configured), and new databases can be created. Each

SQL Database, referred to as a database instance, is a contained SQL Server database and created on a server. This means that you

can create users at the database level directly, making them more portable. These instances are running in a shared hosting model,

with databases from other Azure tenants; while you are essentially sharing the hardware with other tenants, each database instance

is strongly isolated from a security standpoint.

Because SQL Database instances are replicated internally for high availability, some of the partitions also hold replicated instances.

In the following figure you see a representation of a SQL Database instance called TestDB; this instance is in fact a contained

database.

This architecture has a few implications from a performance and management standpoint. The TestDB database instance shares

system stored procedures and internal tables with other database instances on the same SQL Server database. As a result, SQL

Database limits access to sensitive internal system objects for security reasons preventing administrators from executing certain

maintenance commands. However, many system stored procedures and dynamic management views (DMV) are available, allowing

you to troubleshoot certain performance problems on a SQL Database instance.

SQL Database instance as a partition within a SQL Server database

LOAD BALANCER

HIGH AVAILABILITY

The following lists the DMVs currently available:

The Gateway service also uses a load balancing mechanism that periodically evaluates the current load on the primary replica. The

Gateway has the authority to upgrade a secondary replica as the new primary replica. This continuous shift in primary replica

promotion allows SQL Database to respond to increases in workloads quickly and to better distribute server resources

across the pool of servers available.

SQL Database instances are copied to other partitions for high redundancy and availability. Each SQL Database instance, including

its copies, is called a replica. The primary replica is the database instance you connect to and execute statements against. There are

two secondary replicas for redundancy. When a database commit is issued against the primary replica, at least one of the other two

secondary replicas must also confirm the commit operation before the transaction is considered committed. This is referred to as a

quorum commit.

sys.dm_tran_active_transactions

sys.dm_tran_database_transactions

sys.dm_tran_locks

sys.dm_tran_session_transactions

sys.dm_exec_connections

sys.dm_exec_query_plan

sys.dm_exec_query_stats

sys.dm_exec_requests

sys.dm_exec_sessions

sys.dm_exec_sql_text

sys.dm_exec_text_query_plan

sys.dm_db_partition_stats

SQL Database’s quorum Commit

BACKUP AND GEO REPLICATION

This replication architecture ensures 99.99% connection availability and is designed to fail over quickly to a secondary replica if the

primary replica fails. The failover could take place for multiple reasons including: a failure on the primary replica, a failure on the

server itself, or a failure on the rack that holds the server. The failover could also happen for other reasons that are not considered

hard failures, such as during an upgrade of the SQL Database environment. The failover process could take a few seconds, which

will disconnect clients with active sessions to the primary replica at the time of the failure and prevent new connections until the new

replica becomes available.

SQL Database o�ers advanced backup and geo-replication capabilities; geo replication is available for both backup recovery and

asynchronous transactional replication. Point in time restores allows you to restore a database automatically backed up by Azure

within 7 to 35 days depending on your database tier (a database tier is a service level you choose when creating a database). You

also have the option to use long-term retention for your backups for up to 10 years.

In addition to point in time restores, SQL Database provides the ability to geo replicate backup files and replicate transactions to

multiple databases asynchronously. Geo-replicated backup files are managed by Microsoft directly; the backup files are stored as

blob storage in the paired database center. Paired data centers are controlled by Microsoft as well; for example the US East is paired

with US West.

When using transactional replication, you can define up to four read-only destination databases in any of the Azure regions. In other

words you can connect to any replicated database and issue SQL commands to access data. You can choose to fail over to a

replicated database and make it the new primary database.

In this screenshot, you see a database created in East Asia, called enzostore, with the recommended target region for

Geo-Replication being Southeast Asia. However you can choose other data centers to replicate the database closer to your

customers in various geographic regions.

SQL DATABASE FIREWALL

AUTHENTICATION AND AUTHORIZATION

ENCRYPTION, AUDITING, DATA MASKING,
COMPLIANCE

SQL Database provides similar levels of user authentication and authorization to SQL Server 2016 by allowing you to manage logins

and database-level users, either as traditional server-scoped logins or the more recent contained database login model. If you have

used SQL Database before, you might be interested to learn that it now supports Azure Active Directory Authentication. When using

a server-scoped login, you first need to create the login on the server (master) and the corresponding user in the desired database(s).

When using the contained database login model, you only need to create the user in the desired database(s).

In addition to the aforementioned firewall configuration options and user authentication and authorization security measures, SQL

Database o�ers optional disk-level encryption at rest, auditing, data masking, and compliance certifications for more sensitive

applications

When enabled, the disk-level encryption feature (TDE) allows you to specify that all data should be encrypted at rest, including

database backups. While TDE provides a significant security capability, you may still want to mask data access to certain fields. For

example you may want to mask data for a Social Security Number. Data masking allows you to define masking rules for specific login

accounts.

From an auditing standpoint, you can easily integrate with Microsoft Power BI to o�er drill down analysis of your logs. You can also

configure email alerts of unexpected activities, such as SQL Injection detection, that can be sent to one or more email addresses.

You can obtain additional information on the portal, such as the source IP Address and the actual T-SQL statement that caused the

alert.

As mentioned previously, SQL Database implements a firewall mechanism to help you limit access to your database instances. The

firewall is designed to keep a list of allowed IP ranges for which database credentials can be further authorized by SQL Database. In

other words, if a client connects outside of the allowed IP ranges, the connection request will be denied even if the credentials are

valid.

You can manage two sets of firewall rules: server-level and database-level. Server-level rules are evaluated first; database rules are

evaluated if the server-level rules fail. A few stored procedures and system views are available to manage the firewall rules. For

example you use the sys.firewall_rules view to list the current rules. To manage the rules you use the

sp_set_firewall_rule and sp_delete_firewall_rule stored procedures to add and delete firewall rules respectively. You may need to

consider the following regarding setting up firewall rules with SQL Database:

SQL Database is secured by default. You must enable the desired IP ranges before establishing a database connection.

The Azure management portal allows you to configure the IP range rules.

The IP ranges defined in SQL Database only work for public IP Addresses. If you are trying to connect from a machine
that is connected to the Internet through NAT (Network Address Translation) you will need to first determine its public
IP Address.

mailto:http://tinyurl.com/go62lnb

RESOURCE LIMITS AND THROTTLING

UNDERSTANDING BILLING
We discussed earlier that each database instance has two secondary replicas. You are charged for the primary replica only. The

secondary replicas are invisible to you and, as such, are not included in your service fees. However you will be charged for

databases used for geo-replication.

When you create a database server, you can choose to create a single database at a time, or an elastic pool. An elastic pool is a

logical container that allows you to create many databases for which performance and billing is managed at the pool level. Elastic

pools allow you to control the overall allocation of CPU/IO/Memory resources across your databases.

The charge for database usage is measured in Database Transaction Units (DTUs) for single databases or elastic DTUs (eDTUs) for

elastic pools. Databases are created in a performance tier (Basic, Standard, Premium), allowing you to choose the number of DTUs

or eDTUs available to your databases.

Your invoice contains a summary of the charges consumed by your Azure services, including databases and data transfer. The entry

level cost (basic tier) for the first DTU is $0.0067 hourly at the time of this writing, which is roughly equivalent to $4.99 per month.

You should note that pricing depends on the tier your database belongs to, and the geographic region.

The following diagram shows that my account is being charged about 0.16 DU per day and has an accumulated cost of $2.31 as of

10/12.

Throttling is a term used to describe a usage boundary in SQL Database or other cloud resources in Azure that are enforced by

delayed execution of queries or through a loss of connection. In SQL Database specifically, throttling is enforced on the database

server to prevent heavy loads from a�ecting other database tenants on the same server. If your query consumes too many

resources, such as CPU, I/O, or memory, your query may be delayed and executed when the resources become available.

If your system exceeds one of the limits for your database tier, for example you attempt to create more than 300 concurrent sessions

on a basic service tier, throttling may kick in and your application may receive an error.

The set of rules used to determine whether throttling will take place and to which degree can be complex and may change over time.

In addition throttling can have direct implications on coding practices and may a�ect how you design certain database components.

For more information about throttling and general database connection management, check SQL Database Resource Limits.

mailto:http://tinyurl.com/go62lnb

CONCLUSION
This whitepaper introduced you to important concepts related to Azure SQL
Database and explains how some of the underlying services provide high
availability, security and replication. Because SQL Database is built as a shared
infrastructure service, in which your databases may reside alongside other
customers’ databases, and because SQL Database requires a flexible
self-service architecture, some of the traditional database concepts are
implemented di�erently than on SQL Server, such as the master database. In
addition, SQL Database imposes performance constraints that vary based on
your service level, such as throttling, to ensure a fair repartition of resources
between tenants. Last but not least, it is important to note that SQL Database,
like any other service o�ered on the Microsoft Azure cloud, evolves rapidly with
frequent updates o�ering enhanced management, development and
operational capabilities. As a result, check back often on the Azure portal to see
how SQL Database evolves over time.

ABOUT IDERA
IDERA understands that IT doesn’t run on the network – it runs on
the data and databases that power your business. That’s why we
design our products with the database as the nucleus of your IT
universe.

Our database lifecycle management solutions allow database and
IT professionals to design, monitor and manage data systems with
complete confidence, whether in the cloud or on-premises.

We o�er a diverse portfolio of free tools and educational
resources to help you do more with less while giving you the
knowledge to deliver even more than you did yesterday.

Whatever your need, IDERA has a solution.

