
SQL Server Whitepaper
®

TROUBLESHOOTING
LOCKING WITH DMVS

An advanced guide for DBAs on the troubleshooting locking problems in SQL Server

BY ROBERT L DAVIS

INTRODUCTION

Database administrators (DBAs) are often called

upon to investigate performance problems

related to locking, but most investigations into

locking rarely go beyond checking for blocks or

investigating deadlocks. It is not very often that

DBAs or SQL developers try to get a deeper

understanding of locks that are occurring.

This paper will outline some techniques

using Dynamic Management Views (DMVs)

for understanding the full impact of the locks

generated by a query. Then it will show you how

you can combine the transaction locks DMV

(sys.dm_tran_locks) with the execution DMVs

(sys.dm_ exec_requests, sys.dm_exec_sql_text,

and sys.dm_exec_ query_plan) to capture a

snapshot that gives you the complete picture

of locking activity hitting a specific table.

LOCKING, BLOCKING, AND DEADLOCKS
Before we can dive into an advanced topic like troubleshooting locking, we need to define some terms to differentiate

concepts that may not be well understood by a lot of database administrators (DBAs) and SQL developers. Locking,

blocking, and deadlocks are related, to a degree, but they are not interchangeable.

Locks: a logical mechanism for controlling access to an object.

• Locks control concurrent access to an object for non-conflicting operations (such as reading data rows)

• Locks prevent concurrent access to an object for conflicting operations (such as updating the same data rows)

Blocks: an incident where one query is waiting for a resource that another query is consuming.

• Most common scenario is caused by conflicting locks for objects

• May be caused by other conflicts, such as a wait for a memory grant

Deadlocks: a blocking scenario where two or more queries are blocking each other while waiting for

locks held by another participating query

• Most common scenario is for two queries that each hold locks for which the other query is waiting

• May involve many queries that involve a circular locking chain that results in a deadlock

• While deadlocks are a product of blocking, the blocking may be caused by resource waits other than
locks for objects, such as waits for memory grants

The simplest way to think of the relationship between locking, blocking, and deadlocks is that locking causes blocking,

and blocking causes deadlocks. When troubleshooting deadlocks, it is necessary to look at the blocking that generated

the deadlocks. In order to understand blocking (that resulted from locks) that causes deadlocks, you must look at the

locks that were being held during the participating transactions.

LOCK CONVERSION
One of the hidden problems with locking is lock conversion. This is a problem with complex data modification

(update, insert, or delete) queries. Query writers are often only concerned with the locks required to perform the data

modification without any thought about the locks that must be taken to identify the rows that are being changed.

Lock conversion is the process of taking one type of lock and then converting it to more restrictive or more granular

lock. For example, a query may start by taking shared locks on a number of rows in order to identify which rows to

modify. At this point, it may release the shared locks on the rows it is not going to modify while converting the rows it

does intend to modify exclusive locks.

Depending on the search criteria and the indexes available, the number of shared locks taken can be much greater

than the number of exclusive locks required to modify the data. On the next page, let’s take a look at the different types

of locks (also called lock modes), all of which come into play with lock conversion:

Lock Code

S

U

X

I(X)

Sch-S

Sch-M

BU

Range(x)

Lock Mode

Shared

Update

Exclusive

Intent

Schema Stability

Schema Modification

Bulk Update

Key Range

Description

A read-only lock. Multiple transactions can have shared
locks on the same resource.

An exclusive lock that can be taken instead of a shared lock
when the resource may be updated later in the process.

Lock on a resource that is going to be modified to ensure that
no other operation may obtain a lock on the resource until the
transaction has committed.

An intent lock indicates that the is the potential to escalate a lower
level lock to a higher level such as page, partition, or table. Intent is
paired with either shared, update, or exclusive locks to indicate the
type of lock that may be taken. Intent locks also allow other queries to
see what lower level locks exist without having to examine all lower
level resources. Intent locks are compatible, but if they conversion
to full locks may not be. For example, 2 queries can have IX locks on
the table, but neither query can get an X lock on the table as long as
another IX lock exists.

Schema stability locks are taken to ensure the stability of the object
schema during an operation that is dependent on the object not
changing. Sch-S locks are compatible with all locks except Sch-M locks.

Schema modification locks are taken when an operation is making
changes to the schema and is an exclusive lock that is not compatible
with other locks.

Bulk update locks are exclusive locks taken during bulk copy
processes that specify the tablock (exclusive table lock) locking hint

Range locks represent a lock on a range of rows in serializable
isolation. Range locks place a lock on the consecutive rows of the
index and include all rows between. This protects the range from any
changes within the range in the index and ensures that the rows can
be queried repeatedly and always receive the exact same set of rows.

For more details on lock modes see http://technet.microsoft.com/en-us/library/ms175519.aspx.

For more information in types of Range locks see http://technet.microsoft.com/en-us/library/ms191272.aspx.

These pages have not been updated for SQL Server 2012, SQL Server 2014, or SQL Server 2016,

 but they are still accurate for current versions.

One method I use to understand the locking that must occur for a data modification query is to think of it as a two part query.

The first part operates similar to a select query and must take shared locks on all rows (or pages or partition or table, etc.)

necessary to identify the rows for modification. The second part is the data modification which takes exclusive locks on only

the rows (pages, partitions, table, etc.) that are actually being modified. The problem is, this is hard to visualize; however,

there are some techniques to help us out here.

http://technet.microsoft.com/en-us/library/ms175519.aspx
http://technet.microsoft.com/en-us/library/ms191272.aspx

This exercise uses the sample database AdventureWorks2014 available for download from Codeplex

(http://msftdbprodsamples.codeplex.com/). The query below seems like it would be pretty straightforward with regard

to locking. If there are any rows that match the criteria, they will be locked. In my copy of the database, there are 4,472

rows with a quantity of 4, but because we are only deleting the top 100 rows, it should only need to locks those rows.

Delete Top(100)
From Production.TransactionHistory
Where Quantity = 4;

Measuring the locks of a short transaction like this can be tricky unless you are using a tool like Extended Events or a

SQL Trace. However, we can measure the locks by using an explicit transaction and the DMV sys.dm_tran_locks. I can

query the DMV for my current transaction by specifying where the column session_id equals the function @@SPID. The

@@SPID function returns the session ID for the current session. While the transaction is not committed, I can get a view

of the locks being held at the end of the transaction.

I group the DMV results on resource_type (the type of object being locked) and request_mode (the type of lock that

was taken). This gives me a total of all current locks on all objects for the session.

SELECT resource_type,
 request_mode,
 LockCount = COUNT(*)
FROM sys.dm_tran_locks
WHERE request_session_id = @@SPID
Group By resource_type, request_mode;

This is wrapped inside of the explicit transaction, as I mentioned above. The query as a whole is as below:

Begin Tran;

Delete Top(100)
From Production.TransactionHistory
Where Quantity = 4;

SELECT resource_type,
 request_mode,
 LockCount = COUNT(*)
FROM sys.dm_tran_locks
WHERE request_session_id = @@SPID
Group By resource_type, request_mode;

Rollback;

The output of the DMV show the locks that are required to delete the top 100 records that match the criteria:

RESOURCE_TYPE

OBJECT

PAGE

DATABASE

KEY

REQUEST_MODE

IX

IX

S

X

LOCKCOUNT

1

72

1

300

http://msftdbprodsamples.codeplex.com/

The shared (S) lock on the database can be ignored for this scenario. All queries take a shared lock at the database

level. There are intent-exclusive (IX) locks at the object (table) and page levels. IX locks serve two purposes.

1. Intent locks establish a hierarchy of locking in case lock escalation needs to occur.

If multiple queries need to escalate locks at the same time, the timing of the intent locks determine which query

is able to escalate its locks first.

2. Simplifies checking for incompatible locks at different levels.

Intent locks at higher levels let other queries know that there is incompatible lock at a lower level. If a query

wants to take an exclusive lock at a higher level like page or table, it doesn’t have to inspect every row involved

to see if any incompatible locks exist. It merely needs to check for the intent locks at its own level to know if

incompatible locks exist at lower levels.

Lastly, we see 300 exclusive key locks. A key lock is a row lock in an index. Because we are only deleting the top 100,

we may have expected to see only 100 row locks; however, there are a total of three indexes on this table (clustered

primary key plus two nonclustered indexes) and locks are taken on all three indexes

We can join sys.dm_tran_locks.resource_associated_entity_id to sys.partitions.partition_id to include the index_ id in

the output to get a clearer picture of the current locks.

SELECT L.resource_type,
 L.request_mode,
 P.index_id,
 LockCount = COUNT(*)
FROM sys.dm_tran_locks L
Left Join sys.partitions P On P.partition_id =
L.resource_associated_entity_id
WHERE L.request_session_id = @@SPID
Group By L.resource_type, L.request_mode, P.index_id;

RESOURCE_TYPE

DATABASE

KEY

KEY

KEY

OBJECT

OBJECT

PAGE

PAGE

PAGE

REQUEST_MODE

S

X

X

X

IX

Sch-S

IX

IX

IX

LOCKCOUNT

1

100

100

100

1

1

7

61

4

INDEX_ID

NULL

1

2

3

NULL

NULL

1

2

3

We can now clearly see that there are 100 exclusive row locks taken to delete the top 100 rows that match the specified

criteria. But this only represents that second part of a data modification query that I talked about earlier. This does not

account for queries that are taken for the first part, the SELECT-like phase of the query.

In order to make sure we are able to capture all locks that the query takes, we can use the holdlock query hint.

Holdlock is synonymous with serializable and will hold locks for the duration of the transaction. With our previous check,

we were only seeing some of the locks taken because some initial locks are dropped once they are no longer needed.

This makes our query look like the below query:

Delete Top(100)
From Production.TransactionHistory with(holdlock)
Where Quantity = 4;

We see two key differences with these results. The 100 exclusive key locks on the index with an ID of 1 is now

expressed as exclusive key range locks. Additionally, there are an additional 802 shared key range locks on the same

index. The range locks represent the fact that before SQL Server can modify any rows, it first has to identify the rows

that will be deleted. In this case, instead of taking individual locks on all 4,472 rows, it is able to take locks on ranges of

rows and only take 902 range locks, 100 of which get converted to exclusive locks.

It is very easy to overlook the overhead of these additional locks, in part because they are not easy to capture. As I

have shown here, you can easily use the DMV sys.dm_tran_locks to capture the total locks taken by the query.

Another reason it is easy to overlook these additional locks is because they are shared locks that get dropped when

they are no longer needed. However, all locks have overhead. They consume memory, and increase the chances

that the query will escalate to higher level locks. This technique is particularly useful when you have a query that is

escalating to higher level locks even though it is modifying less rows than you think should trigger escalation. The query

may have exceeded the lock count threshold during the first part of the query (identifying the rows to modify).

RESOURCE_TYPE

DATABASE

KEY

KEY

KEY

KEY

OBJECT

OBJECT

PAGE

PAGE

PAGE

REQUEST_MODE

S

RangeS-U

RangeX-X

X

X

IX

Sch-S

IX

IX

IX

LOCKCOUNT

1

802

100

100

100

1

1

7

61

4

INDEX_ID

NULL

1

1

2

3

NULL

NULL

1

2

3

IDENTIFYING COMPETING LOCKS
Another common scenario that DBAs may have to contend with on very busy systems is when there are a lot of

blocking activities and quite possibly a long blocking chain. When you look at the DMV sys.dm_exec_requests, you

can identify queries that are suspended waiting for a lock and the query that is holding the lock that is incompatible

with the lock that is waiting for a grant. What you cannot readily see is the chain of locks that may be ahead of your

query that is waiting.

Imagine a scenario where you have a long blocking chain that is blocking many queries. You can see that

there is massive blocking, but you cannot readily determine the extent to which your query is blocked.

You could go through killing the blocking queries one at a time until the query you’re concerned with is able

to continue, but that does nothing to address the underlying problem. Before going to this extreme, we can grab

a snapshot of what queries are hitting the table where the block is occurring so we can see what queries were

conflicting.

To demonstrate this, let’s start off with a couple of queries that will generate some conflicting locks on the dbo.

FactInternetSales table in the sample database AdventureWorksDW2014. To generate an on-going workload, I will

use the free tool, SQL Load Generator, which can be downloaded from the CodePlex site (http://sqlloadgenerator.

codeplex.com/). I run each query with ten concurrent queries. The tool will run each query in ten sessions and

keep cycling through them until I stop them.

The two queries I use to generate a load are a simple select with a table lock (tablock) and an update

that updates every row:

SELECT *
FROM [dbo].[FactInternetSales] with(tablock);

Update [dbo].[FactInternetSales]
Set OrderQuantity = OrderQuantity + 1;

The diagnostic query captures everything you will need to diagnose the locking activity on the table in question after you

have dealt with clearing out some of the contention, possibly by killing non-critical conflicting sessions. The query captures

session ID, lock mode (shared, exclusive, intent exclusive, etc), lock state (wait or grant), general command, query status,

current wait, last wait, wait resource, wait time, procedure name, SQL text of currently executing query, and the query plan.

Use AdventureWorksDW2014;

-- Define the table you want to search
Declare @TableName nvarchar(257);

Set @TableName = N’dbo.FactInternetSales’;

-- Take a snapshot of locking activity on table
Select TableName = @TableName,
 SessionID = R.session_id,
 BlockingSessionID = R.blocking_session_id,
 LockMode = TL.request_mode,
 LockStatus = TL.request_status,
 Command = R.command,
 QueryStatus = R.status,
 CurrentWait = R.wait_type,
 LastWait = R.last_wait_type,
 WaitResource = R.wait_resource,
 WaitTime = R.wait_time,
 ProcedureName = IsNull(OBJECT_NAME(ST.objectid), ‘** adhoc **’),
 SQLText = SUBSTRING(ST.text, (R.statement_start_offset/2)+1,
 ((Case R.statement_end_offset
 When -1 Then DATALENGTH(ST.text)
 Else R.statement_end_offset
 End - R.statement_start_offset)/2) + 1),
 QueryPlan = Q.query_plan
From sys.dm_tran_locks TL
Inner Join sys.dm_exec_requests R On R.session_id = TL.request_session_id
Outer Apply sys.dm_exec_sql_text(R.sql_handle) As ST
Outer Apply sys.dm_exec_query_plan(R.plan_handle) As Q
Where TL.resource_type In (‘page’, ‘key’, ‘RID’, ‘object’)
And OBJECT_ID(@TableName) = Case
 When resource_type = ‘object’
 Then resource_associated_entity_id
 When resource_type In (‘page’, ‘key’, ‘RID’)
 Then (Select top (1) object_id
 From sys.partitions
 Where partition_id = resource_associated_entity_id
 And index_id in (0, 1))
 End
And TL.resource_database_id = DB_ID()

Order By R.session_id;

The output of the query is quite large. The image above shows a snippet of the output for the activity I generated. It

gives us a complete picture of the activity with locks on the table so we can determine where conflicts are occurring

and which procedures and queries are causing blocking of other queries and procedures.

CONCLUSION

As database administrators and SQL developers,

we can benefit from understanding the complete

picture around locking generated by queries we

write or deal with on systems we manage. Using

the techniques described here for looking at the

total locks generated by a query will help you

realize the full impact of queries, especially those

with broad search criteria.

The transaction locks and execution DMVs

enable you to grab a snapshot of locking activity

when lock contention occurs which allows you

to investigate queries that cause or experience

lock contention. Thus you can do more than

simply kill blocking queries. It enables you to

take a proactive approach to preventing future

contention for the locks on objects.

Writer Robert L Davis

Applies To SQL Server 2008, SQL Server 2008 R2, SQL Server 2012, SQL Server 2014, SQL Server 2016

DETAILS

IDERA understands that IT doesn’t run on the network –

it runs on the data and databases that power your

business. That’s why we design our products with the

database as the nucleus of your IT universe.

Our database lifecycle management solutions allow

database and IT professionals to design, monitor and

manage data systems with complete confidence,

whether in the cloud or on-premises.

We offer a diverse portfolio of free tools and

educational resources to help you do more with less

while giving you the knowledge to deliver even more

than you did yesterday.

Whatever your need, IDERA has a solution.

SQL DIAGNOSTIC MANAGER
ACHIEVE 24/7 SQL MONITORING

• Performance monitoring for physical and virtual environments

• Query plan monitoring to see the causes of blocks and deadlocks

• Integrated SQL Doctor expert recommendations

• Easy integration with Microsoft SCOM

• Predictive alerting with settings to avoid false alerts

• Web-based dashboard with at-a-glance views of top issues and alerts

IDERA.com

Start for FREE

https://www.idera.com/productssolutions/sqlserver/sqldiagnosticmanager/freetrialsubscriptionform?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=troubleshooting-locking-with-dmvs
https://www.idera.com/productssolutions/sqlserver/sqldiagnosticmanager/freetrialsubscriptionform

