
SQL Server Security Whitepaper®

TOP 5 ITEMS
TO AUDIT IN
SQL SERVER

Learn auditing methods to identify key database security concerns

by k. Brian Kelley

TABLE OF CONTENTS
1	 INTRODUCTION

3	 SECTION TWO: CONTROL AND IMPERSONATE PERMISSIONS
	 4 THE POWER OF CONTROL
	 5 IMPERSONATE FOR PRIVILEGE ESCALATION

6	 SECTION THREE: DATABASE OWNERSHIP AND THE db_owner ROLE
	 6 AUDITING THE ACTUAL DATABASE OWNER
	 6 AUDITING THE db_owner AND db_securityadmin FIXED DATABASE ROLES

7	 SECTION FOUR: DATABASE PERMISSIONS
	 8 DATABASE SECURABLE
	 8 SCHEMA SECURABLE
	 9 OBJECT SECURABLE
	 9 OTHER SECURABLE

9	 SECTION FIVE: AUDITING FAILED LOGINS
	 10 CONFIGURING AUDITING ON FAILED LOGINS THE REGULAR WAY
	 11 FINDING THE FAILED LOGIN EVENTS IN THE SQL SERVER LOG
	 11 FINDING THE AUDIT EVENTS IN THE APPLICATION EVENT LOG

12	 SECTION SIX: A WORD ABOUT AUTOMATION TOOLS

12	 ABOUT THE AUTHOR: K. BRIAN KELLEY

© Copyright 2020, IDERA, Inc.

1	 SECTION ONE: ADMINISTRATIVE ACCESS TO SQL SERVER
	 1 HARDENING system administrator
	 2 AUDITING THE sysadmin AND securityadmin ROLES

1

SQL Server provides robust capabilities to monitor itself, and it can be easy
to be overwhelmed with the choices presented through catalog or dynamic
management views, extended events, server-side traces (for older versions of
SQL Server), or performance counters. That is true on the security side as well.
This whitepaper presents the top five items you should be auditing on all of your
SQL Servers, and how to do them. Keeping an eye on these items will help you
verify database security and access to your environment. They are:

INTRODUCTION

1. Who has administrative access to SQL Server?

2. Who has been granted CONTROL and IMPERSONATE permissions?

3. Who are the database owners?

4. What are the respective database permissions?

5. What failed logins are you getting on your SQL Servers?

ADMINISTRATIVE ACCESS TO SQL SERVER
SECTION ONE

Traditionally, we have focused on two areas:

• The system administrator account
• Members of the sysadmin server role

However, we are going to add a third one: the securityadmin role. First, though, we will look at system administrator.

HARDENING system administrator
As a general rule, the system administrator account should never be used. It is just like the Administrator account at the

operating system level. The best practice for Windows is to rename and disable the Administrator account. While it is possible

to discover the renamed account, renaming the account protects against scripts and attempts which target the old name. As

a second step, if we disable system administrator, it cannot be used to connect to SQL Server.

2

Within SQL Server, the system administrator account always has the same principal ID (1). We can use that to execute a simple

query to check to see if it has been renamed and disabled.

SELECT name, is_disabled
FROM sys.sql_logins
WHERE principal_id = 1;

This simple audit script should be run regularly (preferably via automation) if you do not have a third party
means of monitoring this account. That is true of all the scripts provided in this whitepaper.

AUDITING THE sysadmin AND securityadmin ROLES
The sysadmin role has been on the audit list because a member of that role can do anything within SQL Server. However,

securityadmin should be added because a member of that role has the potential to create a login with equivalent rights as

a member of the sysadmin role. Before SQL Server 2005, this was not possible. Some guidance still reflects how this role

functioned in SQL Server 2000 and older.

Starting with SQL Server 2005 to the latest version of SQL Server 2019, securityadmin gained the ability to grant the

CONTROL permission at the server (meaning SQL Server) level, which is equivalent to what a member of the sysadmin server

role can do. We will get to auditing for CONTROL permissions next. Concerning auditing for the two server roles, there are

two ways to proceed.

The Older Way, Using sp_helpsrvrolemember:
A system stored procedure, sp_helpsrvrolemember, is available that will report the members of a fixed server role. For the

two roles we are interested in, here are the commands:

EXEC sp_helpsrvrolemember ‘sysadmin’;
EXEC sp_helpsrvrolemember ‘securityadmin’;

For the fixed server roles, the ones that come with Microsoft SQL Server, this method works fine. However, this system stored

procedure does not report on user-defined server roles, which were available in the latest versions of SQL Server. Therefore,

there is a second way to get role membership.

3

The New Way, Using Catalog Views:

• sys.server_principals
• sys.server_role_members

The advantage to this method is we can query for members of both roles in a single query:

SELECT R.name AS ‘Role’, L.name AS ‘Login’
FROM sys.server_principals AS L
 	 JOIN sys.server_role_members AS RM
 		 ON L.principal_id = RM.member_principal_id
	 JOIN sys.server_principals AS R
		 ON R.principal_id = RM.role_principal_id
WHERE R.name IN (‘sysadmin’, ‘securityadmin’)
ORDER BY R.name, L.name;

There are two catalog views we will need to use to get the same information as with sp_helpsrvrolemember. They are:

SECTION TWO
CONTROL AND IMPERSONATE PERMISSIONS
SQL Server does not just provide the ability to grant administrative rights through roles. It also provides the ability to assign

permissions against what are called securables. One of those securables is Server, which corresponds to the SQL Server as

a whole. Other securables include traditional objects like tables, views, and stored procedures. SQL Server also considers

logins and users as securables. The complete list can be found in the documentation of SQL Server, Books Online. However,

for now, we are primarily concerned with four securables in particular: Server, Database, Login, and User.

THE POWER OF CONTROL

4

For the first two securables, Server and Database, we are concerned with when the CONTROL permission has been

granted. CONTROL gives complete control over the securables. Some securables are also called scopes. Scopes are simply

securables that can contain other securables, which leads to a hierarchy much like a Windows folder can contain subfolders

and files. The Server securables is a scope, and it contains Databases and Logins as well as other securables. Databases are

also scopes and contain Users, Schemas, and other database-level objects. There is one more scope, the Schema, which is

what contains the traditional objects like tables, views, stored procedures, and functions. Schemas themselves are within the

Database scope.

What is important to note about scopes is that when permission is granted to a scope, it carries down to everything contained

by that scope, following the hierarchy. If a login has CONTROL permission against Server, that means it has CONTROL

permission over everything in SQL Server. Having CONTROL against a Database means having CONTROL over everything

contained in the database. That is why auditing for CONTROL is important. Here is how to do it at the Server level:

-- For the codes used in class and type
-- See the Books Online entry for sys.server_permissions
SELECT L.name, P.state_desc, P.permission_name
FROM sys.server_permissions AS P
	 JOIN sys.server_principals AS L
	 ON P.grantee_principal_id = L.principal_id
WHERE P.class = 100
	 AND P.type = ‘CL’
ORDER BY L.name;

-- For the codes used in class and type
-- See the Books Online entry for sys.database_permissions
SELECT U.name, P.state_desc, P.permission_name
FROM sys.database_permissions AS P
	 JOIN sys.database_principals AS U
	 ON P.grantee_principal_id = U.principal_id
WHERE P.class = 0
	 AND P.type = ‘CL’;

You will also want to audit each database. This query needs to be run in the database.

Having CONTROL against a schema is also important, but we will discuss permissions below the Database scope shortly.

5

IMPERSONATE FOR PRIVILEGE ESCALATION
If a login does not have permission to do something, but if it can impersonate someone who does, then the login effectively

has the same permissions as the impersonated login. That is also true at the database level with users. Therefore, auditing

for IMPERSONATE is important, especially on logins and users with elevated privileges such as system administrator or

database owner. Here is how to do so at the server level with the second name being the login that can be impersonated:

-- For the codes used in class and type
-- See the Books Online entry for sys.server_permissions
SELECT L.name, P.state_desc, P.permission_name, I.name
FROM sys.server_permissions AS P
 	 JOIN sys.server_principals AS L
 	 ON P.grantee_principal_id = L.principal_id
 	 JOIN sys.server_principals AS I
 	 ON P.major_id = I.principal_id
WHERE P.class = 101
 	 AND P.type = ‘IM’
ORDER BY L.name, I.name;

-- For the codes used in class and type
-- See the Books Online entry for sys.database_permissions
SELECT U.name, P.state_desc, P.permission_name, I.name
FROM sys.database_permissions AS P
 	 JOIN sys.database_principals AS U
	 ON P.grantee_principal_id = U.principal_id
 	 JOIN sys.database_principals AS I
 	 ON P.major_id = I.principal_id
WHERE P.class = 4
	 AND P.type = ‘IM’
ORDER BY U.name, I.name;

And here is the query for the database level:

There are legitimate uses for IMPERSONATE, which is why it is provided as permission within SQL Server.

Therefore, if you encounter it on any of your servers, verify that the occurrence is valid.

6

DATABASE OWNERSHIP AND THE db_owner role
SECTION THREE

Ownership implies control, and that is undoubtedly true with SQL Server. With regards to database ownership, we are

concerned with two things:

If a login owns a database, it maps into the database as a database owner (dbo) by default. So database administrator

members of the sysadmin role, by the way. The reason this is important is that the database owner user bypasses security

checks. Whoever owns a database can do anything he or she wants within it. Therefore, auditing for database owners is

essential. The following query may result in the Owner showing as NULL. That can happen if a login owned a database, but

the login was subsequently dropped from SQL Server, and the database ownership was never transferred. Any NULL listings

should be updated appropriately.

• The actual owner of the database
• Members of the db_owner fixed database role

AUDITING THE ACTUAL DATABASE OWNER

SELECT D.name AS ‘Database’, L.name AS ‘Owner’
FROM sys.databases AS D
 	 LEFT JOIN sys.server_principals AS L
 	 ON D.owner_sid = L.sid
ORDER BY D.name;

AUDITING THE db_owner AND db_securityadmin FIXED
DATABASE ROLES
We are also concerned with members of the db_owner role within a database. Members of the db_owner role, unless

explicitly blocked by a DENY, also can do anything within the database. That is different from database owner (dbo), for which

the DENY will not apply. Although a DENY can block a member of db_owner, that user does have the ability to revoke the

DENY, thereby gaining access. As a result, this level of permission should be audited, too. Once again, we have two methods,

similar to what we had with the server roles.

7

There is a system stored procedure at the database level called sp_helprolemember, and it functions as the server level
sp_helpsrvrolemember. Therefore, we just need to specify the fixed database role, db_owner, to audit:

Using sp_helprolemember:

EXEC sp_helprolemember ‘db_owner’;

Using the catalog views:
The other method is to use catalog views. Again, the view structure at the database level mirrors the server level
catalog views.

SELECT U.name AS ‘User’, R.name AS ‘Role’
FROM sys.database_principals AS U
	 JOIN sys.database_role_members AS RM
 	 ON U.principal_id = RM.member_principal_id
 	 JOIN sys.database_principals AS R
	 ON R.principal_id = RM.role_principal_id
WHERE R.name = ‘db_owner’
ORDER BY U.name;

DATABASE PERMISSIONS
SECTION FOUR

Applications use databases, and naturally, we are concerned about database permissions. There are many catalog views

around database objects, all of which are necessary to get a complete view of permissions within the database. Let us look at

the most typical securabless

8

SELECT U.name, P.state_desc, P.permission_name
FROM sys.database_permissions AS P
 	 JOIN sys.database_principals AS U
	 ON P.grantee_principal_id = U.principal_id
WHERE P.class = 0
 	 AND NOT P.type = ‘CO’ -- Excluding Connect permission
ORDER BY U.name, P.permission_name;

SCHEMA SECURABLES
Because a schema is what contains tables, views, stored procedures, and more, it is important to query the schema permissions

as well because remember that SQL Server treats the securables scopes as a hierarchy. Therefore, if I have SELECT permission

on a scope, I have permission for all objects within that hierarchy. That carries into other scopes as well. Therefore, if a user has

SELECT at the database level, it has SELECT on every table and view in the database. If it has to EXECUTE at the schema level,

it has to EXECUTE on every stored procedure within the schema. Here is how to audit the permissions:

SELECT U.name AS ‘User’, P.state_desc, P.permission_name, S.name AS ‘Schema’
FROM sys.database_permissions AS P
 	 JOIN sys.database_principals AS U
 	 ON P.grantee_principal_id = U.principal_id
 	 JOIN sys.schemas AS S
 	 ON P.major_id = S.schema_id
WHERE P.class = 3
ORDER BY U.name, S.name;

We have already covered these securables concerning CONTROL permission, but it is important to see all the permissions

at the database level. For instance, the CREATE TABLE permission is at the database level. Keep in mind that this permission

also grants the ability to ALTER and DROP tables as well. Therefore, here is how to audit everything at the database level:

DATABASE SECURABLES

9

OBJECT SECURABLES
A user can have permissions directly on tables, views, and other objects. Therefore, this should be audited as well:

SELECT U.name AS ‘User’, P.state_desc, P.permission_name,
 	 S.name + ‘.’ + O.name AS ‘Object’
FROM sys.database_permissions AS P
 	 JOIN sys.database_principals AS U
 	 ON P.grantee_principal_id = U.principal_id
 	 JOIN sys.objects AS O
 	 ON P.major_id = O.object_id
 	 JOIN sys.schemas AS S
 	 ON O.schema_id = S.schema_id
WHERE P.class = 1
ORDER BY U.name, O.name, P.permission_name;

I am not accounting for permissions specifically against columns, but the main object. So if a user has permissions against
specific columns in a table or view, this query will not show them. You will have to go an additional join deep, joining to sys.
columns and using the major_id to identify the object and minor_id to identify the specific column in your ON syntax.

OTHER SECURABLES
There are other securables to check for permissions on such as the ones related to encryption and cryptography. They follow
the same format as the queries above, only joining to a different catalog view and using a different class ID for sys.database_
permissions. You can find information on these in Books Online

AUDITING FAILED LOGINS
SECTION FIVE

There are two reasons to audit for failed logins:

• To detect when someone is trying to get into SQL Server improperly.
• To detect when a person or application with a legitimate reason to access SQL Server cannot connect.

10

CONFIGURING AUDITING ON FAILED LOGINS THE REGULAR WAY

It is not usual to find that the second reason is the most prominent one for auditing for failed logins. When an application
is not working, the failed login will typically pinpoint what is wrong. For instance, if someone mistyped a password that the
application will use to connect if you are auditing for failed logins, you will see the failed login and the reason (for example,
a bad password). The lack of a failed login when you are auditing for failed logins is telling as well. For instance, if you do
not see a failed login and the application is failing to connect, this could point to the connection string having the wrong
server, the firewall on one or both servers interfering, or some network issue preventing the communication from occurring.

Therefore, auditing for failed logins is essential not just for security, but as a good operational practice.

To configure an audit for failed logins, right-click on the server in SQL Server Management Studio (SSMS) and choose
Properties from the pop-up menu. Then click on the Security page. Look for this part of the dialog window and ensure that
Failed logins only are marked. If you have a reason to do, you can mark the entry for Both failed and successful logins but

realize that this will put many entries into the SQL Server log and the Application event log if you have a busy SQL Server.

This setting is read when SQL Server starts up. Therefore, for it to take effect, you will need to restart the SQL Server service.

11

There are two reasons to audit for failed logins:

FINDING THE FAILED LOGIN EVENTS IN THE SQL SERVER LOG

If you are auditing for failed logins, open up your SQL Server log and look for entries with the Source of Logon. If you are

using SSMS, you can even choose to Filter on this source. Typically for failed logins, you will see a couple of entries like so:

FINDING THE AUDIT EVENTS IN THE APPLICATION EVENT LOG
When SQL Server is auditing for logins, it will also write events to the OS Application event log. There are often many events
in the Application event log, so the best way to look for these events is to filter the log. If you are in the Event Viewer or
another tool (such as Computer Management), which gives you access to the event logs, drill down until you see Application
under Windows Logs. Right-click on Application and choose Filter Current Log. In the dialog window, enter the event ID, such
as 18456, like so, which will filter the Application log for just those events. We could specify a source, but it will be different

depending on if you have a named instance or not.

Once the filter applies, the number of events you will see will have been reduced. Here is an example of what
you will see for failed logins. The only event IDs showing are 18456. The details of the event tell us what login

failed and why the failure occurred.

12

If your organization has a security information and event management tool, and it is taking events from the
Application event log, it can pick up the failed logins. That would help correlate a path of an adversary in the

event of a real security incident. That is another reason to audit failed logins.

A WORD ABOUT AUTOMATION TOOLS
SECTION SIX

We have intentionally included the scripts and information you need to audit the top five audit concerns we
have listed. While you can collect all of it manually, it is best if you are collecting this information through
automation, such as via scheduled tasks or SQL Server Agent jobs. If you can also process the information
gathered automatically, that is even better. Keep in mind that there are third-party applications that do the grunt
work for you, including reporting and alerting. Among them are tools of IDERA like SQL Compliance Manager,
SQL Secure, and a free tool, SQL Permissions Extractor. They are worth looking into to reduce the amount of
time you have to spend auditing the top five items we have presented here.

ABOUT THE AUTHOR
K. Brian Kelley is a SQL Server author, columnist, and Microsoft Most Valued Professional, focusing primarily
on SQL Server and Windows security. In addition to being a database administrator, he has served as an
infrastructure and security architect encompassing solutions with Citrix, virtualization, and Active Directory.
Brian is also a Certified Information Systems Auditor and has been the head of a computer incident response
team of a financial organization. Brian is active in the information technology community, having spoken at
DevConnections, SQL Saturdays, code camps, and user groups.

SQL COMPLIANCE MANAGER
Improve Any SQL Server Audit

IDERA.com

Start for FREE

• Audit Sensitive Data - see who did what, when, where, and how
• Track and Detect - monitor and alert on suspicious activity
• Satisfy Audits - for PCI, HIPAA, FERPA and SOX requirements
• Generate Reports - 25 built-in reports to validate SQL Server audit trails
• Minimize Overhead - lightweight data collection agent minimizes server impact

https://www.idera.com/productssolutions/sqlserver/sqlcompliancemanager/freetrialsubscriptionform?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=top-five-items-to-audit-in-sql-server
https://www.idera.com/productssolutions/sqlserver/sqlcompliancemanager/freetrialsubscriptionform?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=top-five-items-to-audit-in-sql-server
https://www.idera.com/productssolutions/sqlserver/sqlcompliancemanager/freetrialsubscriptionform
https://www.idera.com/productssolutions/sqlserver/sqlcompliancemanager/freetrialsubscriptionform

