| [AN Database Tools Whitepaper

RELATIONAL
DIVISION

OOOOOOOOOO

———
I (N TRODUCTION

Dr. Codd’s original relational algebra had eight basic operations. Since RDBMS is based on set theory, the
first four are traditional set operations: intersection, set difference, union, and product. These operations are
available in SQL, respectively, as INTERSECT, EXCEPT, UNION, and CROSS JOIN.

The next four are row-oriented: restriction, projection, (natural) join, and divide. These operations are
available in SQL, respectively, as rows picked with a WHERE or ON clause, the column list in a SELECT list, a

simple INNER JOIN..ON operator and, well, we do not have a simple divide in SQL!

SQL also has several OUTER JOINs, OUTER UNION, variants of the ON clause, and the multi-set INTERSECT
ALL, EXCEPT ALL and UNION ALL extensions. But we never added relational division. It can be written with

the other operators, and it turns out that it is not so simple after all.

The idea of relational division is that a divisor table is used to partition a dividend table and produce a

quotient or results table. The quotient table is made up of those values of one column for which a second

column had all of the values in the divisor.

‘f.
©p

Divide colored shapes by {triangle, square, circle}
to get {red, green}

———
I RELATIONAL DIVISION OPERATORS

When | teach this operator, | use colored foam shape tiles used in elementary school to teach naive set theory
and counting. You can get them at any school supply house. Pull out a set of tiles, then draw an outline of several
of them on paper.

In this diagram, | have a set with squares, circles, triangles, and pentagons in red, yellow, green, blue, and purple.

I then make a “divisor” with the set of {square, circle, triangle}; it is just a piece of paper with outlines on it.

COLORED SHAPES
COLOR NAME SHAPE NAME
CREATE TABLE Colored_Shapes --dividend e Triangle
(color_name CHAR(10) NOT NULL, Red Triangle
Green Square
shape_name CHAR(10) NOT NULL, Green Pentagon
Purple Triangle
PRIMARY KEY (color_name, shape_name))
Red Circle
Blue Triangle
Purple Circle
Yellow Square
Green Circle
Red Square
SHAPE NAME
CREATE TABLE Shapes --divisor)
Triangle
(shape_name CHAR(10) NOT NULL PRIMARY KEY); Square
Circle
COLOR NAME
Colored Shapes DIVIDED BY Shapes --quotient Red
Green

| first put the tiles into piles by colors. | pick up each such pile and see if | can match a tile to the outlines on the divisor
paper. And | can do this for Red and Green tiles; pick them up and physically try it.

The important characteristic of a relational division is that the CROSS JOIN of the divisor and the quotient produces

a valid subset of rows from the dividend. This is where the name comes from, since the CROSS JOIN acts “kind of” like
a multiplication operator and the symbol in relational algebra is the simple cross that is also used for multiplication.

———
I D|VISION WITH REMAINDER

There are two kinds of relational division. Division with a remainder allows the dividend table to have more values than
the divisor, which was Dr. Codd’s original definition. For example, if a color pile has more tiles than just those we have in
the divisor, such as the green pentagon, this is fine with us. This is the remainder. See the analogy to simple division from

grade school?

The query can be written as:

In English, this says, “There is no shape in the divisor
SELECT DISTINCT color_name that | cannot match in the dividend,” a sort of double
negative. Not great English, but good logic. The use

e et of the NOT EXISTS() predicates is for speed. Most

WHERE NOT EXISTS SQL implementations will look up a value in an index
(SELECT * rather than scan the whole table. This query for
relational division was made popular by Chris Date
FROM Shapes in his textbooks, but it is neither the only method nor
WHERE NOT EXISTS always the fastest. Another version of the division
can be written so as to avoid three levels of nesting.
(SELECT * I .) .
While it is not original with me, | have made it popular
FROM Colored_Shapes AS CS2 in my books.

WHERE (CS1.color_name = CS2.color_name)

AND (CS2.shape_name = Shapes.shape_name)));

In English, this is a one-to-one mapping. The inner
SELECT CSl.color_name join puts each element of my divisor with an element
of the dividend (if it exists). If the count of elements
FROM Colored_Shapes AS CS1, Shapes AS St in the divisor is the same as the count of matched
WHERE CS1.shape_name = Sl.shape_name elements, then this color is in the quotient. Think
GROUP BY CS1.color_name about an aborigine putting arrowheads and sea
shells in pairs. If he has arrowheads left over, then he

HAVING COUNT(CS1.shape_name) know he has more arrowheads. If he has sea shells
= (SELECT COUNT(shape_name) FROM Shapes); left over, then he knows he has more sea shells.

If there is no surplus of either, then the sets have the same cardinality. Notice there is no concept of a number in this
operation; that is, his math is so limited he cannot say anything like, “I have 34 more sea shells than arrowheads,” with

this mapping concept.

There is a serious difference in the two methods. Burn the paper with the Shapes, so that the divisor is empty. Because
of the NOT EXISTS() predicates in Date’s query, all colors are returned from a division by an empty set. Because of the
COUNT() functions in my query, no colors are returned from a division by an empty set.

Currently in its eighth edition, in the book Introduction to Database Systems, author Chris Date defined another operator
(DIVIDEBY ... PER) which produces the same results as my query, but with more complexity. The philosophical question
is, should a relational division by an empty set mimic the behavior of a numeric division by zero in some way, or be more

“set-oriented” in its outcome?

R XACT DIVISION

The second kind of relational division is exact relational division. The dividend table must match exactly to the values
of the divisor without any extra values.

SELECT CSl.color_name
FROM Colored_Shapes AS CS1
LEFT OUTER JOIN
Shapes AS S1
ON CS1.shape_name = Sl.shape_name
GROUP BY CSl.color_name
HAVING COUNT(CS1.shape_name)
= (SELECT COUNT(shape_name) FROM Shapes)
AND COUNT(S1.shape_name)

= (SELECT COUNT(shape_name) FROM Shapes);

The LEFT OUTER JOIN will create NULL-padded rows if the Colored_Shapes dividend is larger than the Shapes divisor.
If there are no extra tiles, then both the dividend and the divisor are equal in size. Please do not make the mistake of
trying to reduce the HAVING clause with a little algebra to:

HAVING COUNT(CS1.shape_name) = COUNT(S1.shape_name)

because it does not work; it will tell you that the Shapes has (n) shape_name in it and the color_name is certified for (n)
shape_name, but not that those two sets of shape_name are equal to each other.

I NOTE ON PERFORMANCE

As mentioned previously, the nested EXISTS() predicates version of relational division was made popular by Chris Date’s
textbooks, while this author is associated with popularizing the COUNT(*) version of relational division. The Winter 1996
edition of the now-defunct Db2 online magazine had an article entitled “Powerful SQL: Beyond the Basics” by Sheryl
Larsen which gave the results of testing both methods. Her conclusion for the then-current version of Db2 was that the
nested EXISTS() version is better when the quotient has less than 25% of the dividend table’s rows and the COUNT(")
version is better when the quotient is more than 25% of the dividend table.

On the other hand, Matthew W. Spaulding at SnapOn Tools reported his test on SQL Server 2000 with the opposite
results. He had a table with two million rows for the dividend and around 1,000 rows in the divisor, yielding a quotient
of around 1,000 rows. The COUNT method completed in well under one second, whereas the nested NOT EXISTS()
query took roughly five seconds to run. The moral of the story is to test both methods on your particular release of your
product, and draw your own conclusions.

I (ODD’'S DIVISION

A relational division operator proposed by Stephen Todd is defined on two tables with common columns that are joined
together, dropping the JOIN column and retaining only those non-JOIN columns that meet a criterion.

We are given a table, JobParts(job_nbr, part_nbr), and another table, SupParts(sup_nbr, part_nbr), of suppliers and the
parts that they provide. We want to get the supplier and job_nbr pairs such that supplier sn supplies all of the parts
needed for job_nbr jn. This is not quite the same thing as getting the supplier and job_nbr pairs such that job_nbr jn
requires all of the parts provided by supplier sn.

You want to divide the JobParts table by the SupParts table. A rule of thumb: The remainder comes from the dividend,
but all values in the divisor are present.

JobParts SupParts Result = JobSups
job_nbr part_nbr sup_nbr part_nbr job_nbr sup_nbr
il p1 s p1 il s
i p2 sl p2 i s2
j2 p2 sl p3 j2 sl
j2 p4 sl p4 j2 s4
j2 p5 sl p5 i3 sl
3 p2 s p6 i3 s2
s2 p1 i3 s3
s2 p2 i3 s4

s3 p2
s4 p2
s4 p4
s4 p5

Pierre Mullin submitted the following query to carry out the Todd division:

SELECT DISTINCT JP1.job_nbr, CS1.supplier
FROM JobParts AS JP1, SupParts AS CS1
WHERE NOT EXISTS
(SELECT *
FROM JobParts AS JP2
WHERE JP2.job_nbr = JP1.job_nbr
AND JP2.part
NOT IN (SELECT SP2.part
FROM SupParts AS SP2

WHERE SP2.supplier = CS1.supplier));

This is really a modification of the query for Codd’s division, extended to use a JOIN on both tables in the outermost
SELECT statement. The IN predicate for the second subquery can be replaced with a NOT EXISTS() predicate; it might
run a bit faster, depending on the optimizer.

Another related query is finding the pairs of suppliers who sell the same parts. In this data, that would be the pairs (s1,
p2), (s3, p1), (s4, p1), and (s5, p).

SELECT Sl.sup, S2.sup
FROM SupParts AS S1, SupParts AS S2
WHERE S1.sup < S2.sup -- different suppliers
AND Sl.part = S2.part -- same parts
GROUP BY St.sup, S2.sup
HAVING COUNT(*)
= (SELECT COUNT (*) -- same count of parts
FROM SupParts AS S3
WHERE S3.sup = S1.sup)
AND COUNT(Y)
= (SELECT COUNT (%
FROM SupParts AS S4

WHERE S4.sup = S2.sup);

This can be modified into Todd’s division easily by adding the restriction that the parts must also belong to a common job.

Steve Kass came up with a specialized version that depends
on using a numeric code. Assume we have a table that tells us

which players are on which teams. To get pairs of Players on the same team:
CREATE TABLE Team_Assignments SELECT Pl.player_id, P2.player_id
(player_id INTEGER NOT NULL FROM Players AS P1, Players AS P2
REFERENCES Players(player_id) WHERE P1.player_id < P2.player_id
ON DELETE CASCADE GROUP BY P1.player_id, P2.player_id
ON UPDATE CASCADE, HAVING P1.player_id + P2.player_id
team_id CHAR(5) NOT NULL = ALL (SELECT SUM(P3.player_id)
REFERENCES Teams(team_id) FROM Team_Assignments AS P3
ON DELETE CASCADE WHERE P3.player_id
ON UPDATE CASCADE, IN (Pl.player_id, P2.player_id)
PRIMARY KEY (player_id, team_.id)); GROUP BY P3.team_id);

The Standard SQL set difference operator, EXCEPT, can be used to write a very compact version of Dr. Codd’s relational
division. The EXCEPT operator removes the divisor set from the dividend set. If the result is empty, we have a match;

if there is anything left over, it has failed. Using the Colored_Shapes table example, we would write:

SELECT DISTINCT color_name
FROM Colored_Shapes AS CS1
WHERE (SELECT shape_name FROM Shapes
EXCEPT
SELECT shape_name
FROM Colored_Shapes AS CS2

WHERE CS1.color_name = CS2.color_name) IS NULL;

Again, informally, you can imagine that we got a list from each color_name, walked over to the Shapes, and crossed

off each shape_name we could match. If we marked off all the shape_name in the Shapes, we would keep this guy.

Another trick is that an empty subquery expression returns a NULL, which is how we can test for an empty set.
The WHERE clause could just as well have used a NOT EXISTS() predicate instead of the IS NULL predicate.

I ROMLEY'S DIVISION

This somewhat complicated relational division is due to Richard Romley, a DBA retired from Solomon Smith Barney.

The original problem deals with two tables. The first table has a list of managers and the projects they can manage.

The second table has a list of Personnel, their departments and the project to which they are assigned. Each employee

is assigned to one and only one department and each employee works on one and only one project at a time. But a

department can have several different projects at the same time, so a single project can span several departments.

CREATE TABLE Mgr_Projects
(mgr_name CHAR(10) NOT NULL,
project_id CHAR(2) NOT NULL,

PRIMARY KEY(mgr_name, project_id));

INSERT INTO Mgr_Project

VALUES (‘MT, ‘PT), (M7, ‘P3’),
(M2, ‘P2)), (M2’, ‘P3),
(M3, ‘P2)),

(‘M4 ‘PT), (M4, ‘P2), (M4, ‘P3’);

CREATE TABLE Personnel

(emp_id CHAR(10) NOT NULL,
dept_id CHAR(2) NOT NULL,
project_id CHAR(2) NOT NULL,
UNIQUE (emp_id, project_id),
UNIQUE (emp_id, dept_id),

PRIMARY KEY (emp_id, dept_id, project_id));

-- load department #1 data
INSERT INTO Personnel
VALUES (Al', ‘DT, ‘PT),

(‘Bob’, ‘DT, ‘PT1),

(‘Carl’, ‘DT, ‘PT),

(‘Don’, ‘DT, ‘P2’),

(‘Ed’, ‘DT, ‘P27,

(‘Frank’, ‘DT, ‘P2)),

(‘George’, ‘DT, ‘P2Y);

-- load department #2 data
INSERT INTO Personnel
VALUES (‘Harry’, ‘D2’, ‘P2’),

(Jack’, ‘D2’, ‘P2)),

(‘Larry’, ‘D2’, ‘P2),

(‘Mike’, ‘D2, ‘P2’),

(‘Nat, ‘D2’, ‘P2’);

-- load department #3 data

INSERT INTO Personnel

VALUES (‘Oscar’, ‘D3, ‘P2)),
(‘Pat, ‘D3, ‘P2)),

(‘Rich’, ‘D3’, ‘P3);

The problem is to generate a report showing for each
manager of each department whether he is qualified to
manage none, some or all of the projects being worked
on within the department. To find who can manage some,

but not all, of the projects, use a version of relational division.

SELECT M1.mgr_name, Pl.dept_id_name
FROM Mgr_Projects AS M1

CROSS JOIN
Personnel AS P1

WHERE M1.project_id = P1.project_id

GROUP BY M1.mgr_name, Pl.dept_id_name

HAVING COUNT(*) <> (SELECT COUNT(emp_id)
FROM Personnel AS P2

WHERE P2.dept_id_name = Pl.dept_id_name);

The query is simply a relational division with a <> instead of an = in the HAVING clause. Richard came back with a
modification of my answer that uses a characteristic function inside a single aggregate function.

This query uses a characteristic function while my original
SELECT DISTINCT M1.mgr_name, P.dept_id_name version compares a count of Personnel under each manager
to a count of Personnel under each project_id. The use of
“GROUP BY M1.mgr_name, Pl.dept_id_name, P2.project_id”
INNER JOIN with the “SELECT DISTINCT M1.mgr_name, Pl.dept_id_name”
is really the tricky part in this new query. What we have is a

FROM (Mgr_Projects AS M1

Personnel AS P1
three-dimensional space with the (x, y, z) axis representing

ON Mt.project_id = Pl.project_id) (mgr_name, dept_id_name, project_id) and then we reduce it
INNER JOIN to two dimensions (mgr_name, dept_id) by seeing if Personnel

on shared project_ids covers the department or not.
Personnel AS P2

ON P1l.dept_id_name = P2.dept_id_name That observation led to the next change. We can build a table
that shows each combination of manager, department and

GROUP BY M1.mgr_name, Pl.dept_id_name, P2.project_id
the level of authority they have over the projects they have in

HAVING MAX (CASE WHEN M.project_id = P2.project_id common. That is the derived table T1in the following query;
THEN ‘T’ ELSE ‘F’ END) (authority = 1) means the manager is not on the project and

(authority = 2) means that he is on the project_id.
= ‘F’;

SELECT T1.mgr_name, T1.dept_id_name,
CASE SUM(T1.authority)
WHEN 1 THEN ‘None’
WHEN 2 THEN ‘All’
WHEN 3 THEN ‘Some’
ELSE NULL END AS authority_scope
FROM (SELECT DISTINCT M1.mgr_name, Pl.dept_id_name,
MAX (CASE WHEN M1.project_id = P1.project_id
THEN 2 ELSE 1 END) AS authority
FROM Mgr_Projects AS M1
CROSS JOIN
Personnel AS P1

GROUP BY m.mgr_name, Pl.dept_id_name, Pl.project_id) AS T1

GROUP BY T1.mgr_name, T1.dept_id_name;

We can now sum the authority numbers for all the projects within a department to determine the power this manager
has over the department as a whole. If he had a total of one, he has no authority over Personnel on any project in the
department. If he had a total of two, he has power over all Personnel on all projects in the department. If he had a total
of three, he has both a 1and a 2 authority total on some projects within the department. Here is the final answer.

RESULTS
mgr_name dept_id authority_scope
M1 D1 Some
M1 D2 None
M1 D3 Some
M2 D1 Some
M2 D2 All
M2 D3 All
M3 D1 Some
M3 D2 All
M3 D3 Some
M4 D1 All
M4 D2 All

M4 D3 All

———
I CONCLUSION AND A PROGRAMMING PROBLEM

As you can see, there are several kinds of relational division. We have not touched on pulling out subsets based on

the counts of various elements in the divisor and dividend. For example, if we define a widget as three circles and two

squares, then we need to add a quantity column to both of the tables.

Now use what you have seen and write the SQL for this kind of problem:

(color_name CHAR(10) NOT NULL,

shape_name CHAR(10) NOT NULL,

PRIMARY KEY (color_name, shape_name),
onhand_qty INTEGER NOT NULL

CHECK (onhand_gty > 0));

CREATE TABLE Colored_Shapes --dividend

color_name shape_name onhand_qty
Blue Triangle 4
Green Triangle 3
Green Square 2
Green Pentagon 1
Green Circle 5
Purple Circle 2
Purple Triangle 1
Red Triangle 2
Red Circle 2
Red Square 2
Yellow Square 23

HINT: We know immediately that a color with fewer than three circles or fewer than two squares is disqualified from the results.

I ABOUT THE AUTHOR

Joe Celko is the author of a series of ten books on SQL and RDBMS (MKP/Elsevier) that have been in print for over 20

years. He served for 10 years on the ANSI/ISO database standards committee. He has written columns and articles for

the IT trade press for over 30 years. He currently enjoys being a TEALS volunteer and judging the local High School

Science Fest once a year.

