
Database Tools Whitepaper
®

RELATIONAL
DIVISION
BY JOE CELKO

1

INTRODUCTION
Dr. Codd’s original relational algebra had eight basic operations. Since RDBMS is based on set theory, the

first four are traditional set operations: intersection, set difference, union, and product. These operations are

available in SQL, respectively, as INTERSECT, EXCEPT, UNION, and CROSS JOIN.

The next four are row-oriented: restriction, projection, (natural) join, and divide. These operations are

available in SQL, respectively, as rows picked with a WHERE or ON clause, the column list in a SELECT list, a

simple INNER JOIN..ON operator and, well, we do not have a simple divide in SQL!

SQL also has several OUTER JOINs, OUTER UNION, variants of the ON clause, and the multi-set INTERSECT

ALL, EXCEPT ALL and UNION ALL extensions. But we never added relational division. It can be written with

the other operators, and it turns out that it is not so simple after all.

The idea of relational division is that a divisor table is used to partition a dividend table and produce a

quotient or results table. The quotient table is made up of those values of one column for which a second

column had all of the values in the divisor.

Divide colored shapes by {triangle, square, circle}
to get {red, green}

2

RELATIONAL DIVISION OPERATORS
When I teach this operator, I use colored foam shape tiles used in elementary school to teach naive set theory

and counting. You can get them at any school supply house. Pull out a set of tiles, then draw an outline of several

of them on paper.

In this diagram, I have a set with squares, circles, triangles, and pentagons in red, yellow, green, blue, and purple.

I then make a “divisor” with the set of {square, circle, triangle}; it is just a piece of paper with outlines on it.

CREATE TABLE Colored_Shapes --dividend

(color_name CHAR(10) NOT NULL,

shape_name CHAR(10) NOT NULL,

PRIMARY KEY (color_name, shape_name))

CREATE TABLE Shapes --divisor

(shape_name CHAR(10) NOT NULL PRIMARY KEY);

Colored Shapes DIVIDED BY Shapes --quotient

I first put the tiles into piles by colors. I pick up each such pile and see if I can match a tile to the outlines on the divisor

paper. And I can do this for Red and Green tiles; pick them up and physically try it.

The important characteristic of a relational division is that the CROSS JOIN of the divisor and the quotient produces

a valid subset of rows from the dividend. This is where the name comes from, since the CROSS JOIN acts “kind of” like

a multiplication operator and the symbol in relational algebra is the simple cross that is also used for multiplication.

COLOR NAME SHAPE NAME

Green Triangle

Red Triangle

Green Square

Green Pentagon

Purple Triangle

Red Circle

Blue Triangle

Purple Circle

Yellow Square

Green Circle

Red Square

SHAPE NAME

Triangle

Square

Circle

COLOR NAME

Red

Green

COLORED SHAPES

DIVISION WITH REMAINDER
There are two kinds of relational division. Division with a remainder allows the dividend table to have more values than

the divisor, which was Dr. Codd’s original definition. For example, if a color pile has more tiles than just those we have in

the divisor, such as the green pentagon, this is fine with us. This is the remainder. See the analogy to simple division from

grade school?

The query can be written as:

In English, this says, “There is no shape in the divisor

that I cannot match in the dividend,” a sort of double

negative. Not great English, but good logic. The use

of the NOT EXISTS() predicates is for speed. Most

SQL implementations will look up a value in an index

rather than scan the whole table. This query for

relational division was made popular by Chris Date

in his textbooks, but it is neither the only method nor

always the fastest. Another version of the division

can be written so as to avoid three levels of nesting.

While it is not original with me, I have made it popular

in my books.

3

SELECT DISTINCT color_name

	 FROM Colored_Shapes AS CS1

 WHERE NOT EXISTS

	 (SELECT *

		 FROM Shapes

		 WHERE NOT EXISTS

			 (SELECT *

			 FROM Colored_Shapes AS CS2

			 WHERE (CS1.color_name = CS2.color_name)

			 AND (CS2.shape_name = Shapes.shape_name)));

If there is no surplus of either, then the sets have the same cardinality. Notice there is no concept of a number in this

operation; that is, his math is so limited he cannot say anything like, “I have 34 more sea shells than arrowheads,” with

this mapping concept.

There is a serious difference in the two methods. Burn the paper with the Shapes, so that the divisor is empty. Because

of the NOT EXISTS() predicates in Date’s query, all colors are returned from a division by an empty set. Because of the

COUNT() functions in my query, no colors are returned from a division by an empty set.

Currently in its eighth edition, in the book Introduction to Database Systems, author Chris Date defined another operator

(DIVIDEBY ... PER) which produces the same results as my query, but with more complexity. The philosophical question

is, should a relational division by an empty set mimic the behavior of a numeric division by zero in some way, or be more

“set-oriented” in its outcome?

In English, this is a one-to-one mapping. The inner

join puts each element of my divisor with an element

of the dividend (if it exists). If the count of elements

in the divisor is the same as the count of matched

elements, then this color is in the quotient. Think

about an aborigine putting arrowheads and sea

shells in pairs. If he has arrowheads left over, then he

know he has more arrowheads. If he has sea shells

left over, then he knows he has more sea shells.

SELECT CS1.color_name

		 FROM Colored_Shapes AS CS1, Shapes AS S1

	 WHERE CS1.shape_name = S1.shape_name

	 GROUP BY CS1.color_name

HAVING COUNT(CS1.shape_name)

		 = (SELECT COUNT(shape_name) FROM Shapes);

EXACT DIVISION
The second kind of relational division is exact relational division. The dividend table must match exactly to the values

of the divisor without any extra values.

The LEFT OUTER JOIN will create NULL-padded rows if the Colored_Shapes dividend is larger than the Shapes divisor.

If there are no extra tiles, then both the dividend and the divisor are equal in size. Please do not make the mistake of

trying to reduce the HAVING clause with a little algebra to:

because it does not work; it will tell you that the Shapes has (n) shape_name in it and the color_name is certified for (n)

shape_name, but not that those two sets of shape_name are equal to each other.

4

SELECT CS1.color_name

 	 FROM Colored_Shapes AS CS1

		 LEFT OUTER JOIN

		 Shapes AS S1

		 ON CS1.shape_name = S1.shape_name

	 GROUP BY CS1.color_name

HAVING COUNT(CS1.shape_name)

		 = (SELECT COUNT(shape_name) FROM Shapes)

	 AND COUNT(S1.shape_name)

		 = (SELECT COUNT(shape_name) FROM Shapes);

HAVING COUNT(CS1.shape_name) = COUNT(S1.shape_name)

NOTE ON PERFORMANCE
As mentioned previously, the nested EXISTS() predicates version of relational division was made popular by Chris Date’s

textbooks, while this author is associated with popularizing the COUNT(*) version of relational division. The Winter 1996

edition of the now-defunct Db2 online magazine had an article entitled “Powerful SQL: Beyond the Basics” by Sheryl

Larsen which gave the results of testing both methods. Her conclusion for the then-current version of Db2 was that the

nested EXISTS() version is better when the quotient has less than 25% of the dividend table’s rows and the COUNT(*)

version is better when the quotient is more than 25% of the dividend table.

On the other hand, Matthew W. Spaulding at SnapOn Tools reported his test on SQL Server 2000 with the opposite

results. He had a table with two million rows for the dividend and around 1,000 rows in the divisor, yielding a quotient

of around 1,000 rows. The COUNT method completed in well under one second, whereas the nested NOT EXISTS()

query took roughly five seconds to run. The moral of the story is to test both methods on your particular release of your

product, and draw your own conclusions.

TODD’S DIVISION
A relational division operator proposed by Stephen Todd is defined on two tables with common columns that are joined

together, dropping the JOIN column and retaining only those non-JOIN columns that meet a criterion.

We are given a table, JobParts(job_nbr, part_nbr), and another table, SupParts(sup_nbr, part_nbr), of suppliers and the

parts that they provide. We want to get the supplier and job_nbr pairs such that supplier sn supplies all of the parts

needed for job_nbr jn. This is not quite the same thing as getting the supplier and job_nbr pairs such that job_nbr jn

requires all of the parts provided by supplier sn.

You want to divide the JobParts table by the SupParts table. A rule of thumb: The remainder comes from the dividend,

but all values in the divisor are present.

5

job_nbr part_nbr

j1 p1

j1 p2

j2 p2

j2 p4

j2 p5

j3 p2

sup_nbr part_nbr

s1 p1

s1 p2

s1 p3

s1 p4

s1 p5

s1 p6

s2 p1

s2 p2

s3 p2

s4 p2

s4 p4

s4 p5

job_nbr sup_nbr

j1 s1

j1 s2

j2 s1

j2 s4

j3 s1

j3 s2

j3 s3

j3 s4

JobParts SupParts Result = JobSups

Pierre Mullin submitted the following query to carry out the Todd division:

SELECT DISTINCT JP1.job_nbr, CS1.supplier

	 FROM JobParts AS JP1, SupParts AS CS1

WHERE NOT EXISTS

		 (SELECT *

			 FROM JobParts AS JP2

		 WHERE JP2.job_nbr = JP1.job_nbr

	 AND JP2.part

		 NOT IN (SELECT SP2.part

			 FROM SupParts AS SP2

			 WHERE SP2.supplier = CS1.supplier));

This is really a modification of the query for Codd’s division, extended to use a JOIN on both tables in the outermost

SELECT statement. The IN predicate for the second subquery can be replaced with a NOT EXISTS() predicate; it might

run a bit faster, depending on the optimizer.

Another related query is finding the pairs of suppliers who sell the same parts. In this data, that would be the pairs (s1,

p2), (s3, p1), (s4, p1), and (s5, p1).

6

SELECT S1.sup, S2.sup

	 FROM SupParts AS S1, SupParts AS S2

WHERE S1.sup < S2.sup -- different suppliers

	 AND S1.part = S2.part -- same parts

GROUP BY S1.sup, S2.sup

HAVING COUNT(*)

		 = (SELECT COUNT (*) -- same count of parts

			 FROM SupParts AS S3

			 WHERE S3.sup = S1.sup)

				 AND COUNT(*)

					 = (SELECT COUNT (*)

						 FROM SupParts AS S4

						 WHERE S4.sup = S2.sup);

CREATE TABLE Team_Assignments

(player_id INTEGER NOT NULL

REFERENCES Players(player_id)

	 ON DELETE CASCADE

	 ON UPDATE CASCADE,

team_id CHAR(5) NOT NULL

REFERENCES Teams(team_id)

	 ON DELETE CASCADE

	 ON UPDATE CASCADE,

PRIMARY KEY (player_id, team_id));

SELECT P1.player_id, P2.player_id

	 FROM Players AS P1, Players AS P2

WHERE P1.player_id < P2.player_id

GROUP BY P1.player_id, P2.player_id

HAVING P1.player_id + P2.player_id

	 = ALL (SELECT SUM(P3.player_id)

		 FROM Team_Assignments AS P3

		 WHERE P3.player_id

			 IN (P1.player_id, P2.player_id)

		 GROUP BY P3.team_id);

This can be modified into Todd’s division easily by adding the restriction that the parts must also belong to a common job.

Steve Kass came up with a specialized version that depends

on using a numeric code. Assume we have a table that tells us

which players are on which teams. To get pairs of Players on the same team:

7

DIVISION WITH SET OPERATORS
The Standard SQL set difference operator, EXCEPT, can be used to write a very compact version of Dr. Codd’s relational

division. The EXCEPT operator removes the divisor set from the dividend set. If the result is empty, we have a match;

if there is anything left over, it has failed. Using the Colored_Shapes table example, we would write:

Again, informally, you can imagine that we got a list from each color_name, walked over to the Shapes, and crossed

off each shape_name we could match. If we marked off all the shape_name in the Shapes, we would keep this guy.

Another trick is that an empty subquery expression returns a NULL, which is how we can test for an empty set.

The WHERE clause could just as well have used a NOT EXISTS() predicate instead of the IS NULL predicate.

SELECT DISTINCT color_name

	 FROM Colored_Shapes AS CS1

	 WHERE (SELECT shape_name FROM Shapes

	 EXCEPT

	 SELECT shape_name

		 FROM Colored_Shapes AS CS2

		 WHERE CS1.color_name = CS2.color_name) IS NULL;

8

ROMLEY’S DIVISION
This somewhat complicated relational division is due to Richard Romley, a DBA retired from Solomon Smith Barney.

The original problem deals with two tables. The first table has a list of managers and the projects they can manage.

The second table has a list of Personnel, their departments and the project to which they are assigned. Each employee

is assigned to one and only one department and each employee works on one and only one project at a time. But a

department can have several different projects at the same time, so a single project can span several departments.

The problem is to generate a report showing for each

manager of each department whether he is qualified to

manage none, some or all of the projects being worked

on within the department. To find who can manage some,

but not all, of the projects, use a version of relational division.

CREATE TABLE Mgr_Projects

(mgr_name CHAR(10) NOT NULL,

	 project_id CHAR(2) NOT NULL,

	 PRIMARY KEY(mgr_name, project_id));

INSERT INTO Mgr_Project

VALUES (‘M1’, ‘P1’), (‘M1’, ‘P3’),

	 (‘M2’, ‘P2’), (‘M2’, ‘P3’),

	 (‘M3’, ‘P2’),

	 (‘M4’, ‘P1’), (‘M4’, ‘P2’), (‘M4’, ‘P3’);

CREATE TABLE Personnel

(emp_id CHAR(10) NOT NULL,

	 dept_id CHAR(2) NOT NULL,

	 project_id CHAR(2) NOT NULL,

	 UNIQUE (emp_id, project_id),

	 UNIQUE (emp_id, dept_id),

	 PRIMARY KEY (emp_id, dept_id, project_id));

-- load department #1 data

INSERT INTO Personnel

VALUES (‘Al’, ‘D1’, ‘P1’),

	 (‘Bob’, ‘D1’, ‘P1’),

	 (‘Carl’, ‘D1’, ‘P1’),

	 (‘Don’, ‘D1’, ‘P2’),

	 (‘Ed’, ‘D1’, ‘P2’),

	 (‘Frank’, ‘D1’, ‘P2’),

	 (‘George’, ‘D1’, ‘P2’);

-- load department #2 data

INSERT INTO Personnel

VALUES (‘Harry’, ‘D2’, ‘P2’),

	 (‘Jack’, ‘D2’, ‘P2’),

	 (‘Larry’, ‘D2’, ‘P2’),

	 (‘Mike’, ‘D2’, ‘P2’),

	 (‘Nat’, ‘D2’, ‘P2’);

-- load department #3 data

INSERT INTO Personnel

VALUES (‘Oscar’, ‘D3’, ‘P2’),

	 (‘Pat’, ‘D3’, ‘P2’),

	 (‘Rich’, ‘D3’, ‘P3’);

SELECT M1.mgr_name, P1.dept_id_name

 FROM Mgr_Projects AS M1

 CROSS JOIN

 Personnel AS P1

 WHERE M1.project_id = P1.project_id

 GROUP BY M1.mgr_name, P1.dept_id_name

HAVING COUNT(*) <> (SELECT COUNT(emp_id)

 FROM Personnel AS P2

 WHERE P2.dept_id_name = P1.dept_id_name);

9

The query is simply a relational division with a <> instead of an = in the HAVING clause. Richard came back with a

modification of my answer that uses a characteristic function inside a single aggregate function.

This query uses a characteristic function while my original

version compares a count of Personnel under each manager

to a count of Personnel under each project_id. The use of

“GROUP BY M1.mgr_name, P1.dept_id_name, P2.project_id”

with the “SELECT DISTINCT M1.mgr_name, P1.dept_id_name”

is really the tricky part in this new query. What we have is a

three-dimensional space with the (x, y, z) axis representing

(mgr_name, dept_id_name, project_id) and then we reduce it

to two dimensions (mgr_name, dept_id) by seeing if Personnel

on shared project_ids covers the department or not.

That observation led to the next change. We can build a table

that shows each combination of manager, department and

the level of authority they have over the projects they have in

common. That is the derived table T1 in the following query;

(authority = 1) means the manager is not on the project and

(authority = 2) means that he is on the project_id.

SELECT DISTINCT M1.mgr_name, P1.dept_id_name

	 FROM (Mgr_Projects AS M1

		 INNER JOIN

		 Personnel AS P1

		 ON M1.project_id = P1.project_id)

		 INNER JOIN

		 Personnel AS P2

		 ON P1.dept_id_name = P2.dept_id_name

GROUP BY M1.mgr_name, P1.dept_id_name, P2.project_id

HAVING MAX (CASE WHEN M1.project_id = P2.project_id

			 THEN ‘T’ ELSE ‘F’ END)

		 = ‘F’;

SELECT T1.mgr_name, T1.dept_id_name,

	 CASE SUM(T1.authority)

	 WHEN 1 THEN ‘None’

	 WHEN 2 THEN ‘All’

	 WHEN 3 THEN ‘Some’

	 ELSE NULL END AS authority_scope

FROM (SELECT DISTINCT M1.mgr_name, P1.dept_id_name,

			 MAX (CASE WHEN M1.project_id = P1.project_id

				 THEN 2 ELSE 1 END) AS authority

		 FROM Mgr_Projects AS M1

	 CROSS JOIN

	 Personnel AS P1

	 GROUP BY m.mgr_name, P1.dept_id_name, P1.project_id) AS T1

GROUP BY T1.mgr_name, T1.dept_id_name;

10

mgr_name dept_id authority_scope

M1 D1 Some

M1 D2 None

M1 D3 Some

M2 D1 Some

M2 D2 All

M2 D3 All

M3 D1 Some

M3 D2 All

M3 D3 Some

M4 D1 All

M4 D2 All

M4 D3 All

RESULTS

We can now sum the authority numbers for all the projects within a department to determine the power this manager

has over the department as a whole. If he had a total of one, he has no authority over Personnel on any project in the

department. If he had a total of two, he has power over all Personnel on all projects in the department. If he had a total

of three, he has both a 1 and a 2 authority total on some projects within the department. Here is the final answer.

Joe Celko is the author of a series of ten books on SQL and RDBMS (MKP/Elsevier) that have been in print for over 20

years. He served for 10 years on the ANSI/ISO database standards committee. He has written columns and articles for

the IT trade press for over 30 years. He currently enjoys being a TEALS volunteer and judging the local High School

Science Fest once a year.

ABOUT THE AUTHOR

11

CONCLUSION AND A PROGRAMMING PROBLEM
As you can see, there are several kinds of relational division. We have not touched on pulling out subsets based on

the counts of various elements in the divisor and dividend. For example, if we define a widget as three circles and two

squares, then we need to add a quantity column to both of the tables.

Now use what you have seen and write the SQL for this kind of problem:

HINT: We know immediately that a color with fewer than three circles or fewer than two squares is disqualified from the results.

CREATE TABLE Colored_Shapes --dividend

(color_name CHAR(10) NOT NULL,

shape_name CHAR(10) NOT NULL,

PRIMARY KEY (color_name, shape_name),

onhand_qty INTEGER NOT NULL

	 CHECK (onhand_qty > 0));

color_name shape_name onhand_qty

Blue Triangle 4

Green Triangle 3

Green Square 2

Green Pentagon 1

Green Circle 5

Purple Circle 2

Purple Triangle 1

Red Triangle 2

Red Circle 2

Red Square 2

Yellow Square 23

