
Database Tools Whitepaper®

THE KEYS 
TO A HIGH-
PERFORMING 
DATABASE



Performance is one of the most critical characteristics of enterprise databases and their 
associated applications. The inability to meet performance expectations can doom an otherwise 
excellent solution to failure. Internal systems will suffer from misuse and poorly performing public 
database applications may drive current and prospective customers to search for alternatives.

It can be challenging to design, implement, and maintain a high-performing database. In this 
whitepaper, we will be discussing performance best practices used during system development, 
and after the database goes into production. In some cases, we will use examples of 
recommended guidelines for specific database platforms like SQL Server. The standards apply to 
other databases in the same class. Methods that are useful for one flavor of a relational database 
will usually work for others with some minor variations.

The decisions made in the planning, design, and development of a database have a tremendous 
impact on the functionality of the finished product. Performance optimization can be performed 
after database applications have been implemented, but it is more productive to address as 
many issues as possible before the system goes live. Changes in usage patterns and the 
computing environment may necessitate performance tuning throughout the life of a database.

1

INTRODUCTION



DATA STRUCTURE AND DATABASE 
SELECTION

2

An essential first step is to understand the data that the database and application will process. 
The database that is selected for a particular application can have a tremendous impact on the 
ability of the system to perform up to expectations. Well-structured data is a prime candidate for 
one of the many SQL-based relational databases on the market.

When processing documents or more variable structured data such as emails or social media 
feeds, a NoSQL database is a more appropriate platform choice. These databases are designed 
to make it easier to handle unstructured data. Choosing the wrong solution will make it 
impossible to achieve peak performance and may result in a failed application.

HARDWARE CHOICES ARE CRITICAL 
TO PERFORMANCE
Databases are a combination of physical and logical entities. The hardware components on which 
a database runs form its foundation. As with any complex structure, an inadequate foundation 
leads to problems that can bring down the whole building. What may seem like minor issues during 
system development and testing can grow exponentially to become major impediments to system 
functionality and performance. As a general rule, avoid making unnecessary concessions regarding 
the hardware used for a database.

Hardware is a broad category that can be broken down into individual elements that contribute 
to database performance. In some cases, tuning a single item can have a dramatic effect on the 
overall system. The recommended parameters are valid with either physical or virtual machines.

STORAGE
A discussion of storage encompasses the type of devices used to store database information as 
well as the space capacity requirements of a given system.



DEVICE TYPE
The disk subsystem used to support a database implementation needs to have the speed to 
address its input and output (I/O) requirements. Millions of disk I/O operations can be required to 
satisfy a single query. Seemingly minor differences in disk access speed can multiply to cause 
substantial changes in response time. 

Enterprise-class solid-state drives (SSDs) and redundant arrays of independent disks (RAID) will 
provide better performance than traditional hard disk drives (HDDs). SSDs are faster and use less 
energy than HDDs but are slightly less reliable. Strictly from a performance perspective, SSDs will 
provide better database response time by reducing latency.

Taking the next step and using RAID implementations helps solve potential reliability issues while 
maintaining high I/O speed. RAID comes in multiple flavors that offer different features designed to 
improve reliability and speed. Mirroring is a technique that fully replicates data to guard against disk 
failure. Striping data across two or more disks improves performance when writing data by allowing 
more information to be written simultaneously. Using mirroring and striping together offers the best 
combination of performance and reliability in a disk subsystem.

3



Regardless of the type of disk subsystem that is used for database storage, meeting the capacity 
sizing guidelines is a critical aspect of attaining optimum performance. We will look at the 
recommended amount of storage necessary for SQL Server instances. These are several distinct 
SQL Server components that need to be considered when allocating space resources. All of these 
storage elements scale linearly as the size of a database grows.

4

Here are some recommendations for implementing RAID arrays with SQL Server databases.

STORAGE CAPACITY

RAID 5 and RAID 6 provide redundancy with parity blocks that slow down the speed 
of write operations. They provide exceptional read performance and are suitable for 
databases that are primarily used to read data.

Segregating log files on a RAID array separate from data files will improve overall 
database performance.

It is more expensive to implement RAID or purchase SSDs to replace the HDDs that may have been 
allocated for a database. Business decisions will influence whether the performance gains are worth 
the capital expense.

Database files - A good rule is that every 1,000 nodes require a gigabyte of storage. 
Databases with 20,000 nodes need at least 20 GB while a 100,000 node system 
requires a minimum of 100 GB for its database files.

Transaction logs - The storage capacity provisioned for transaction logs should be 20% 
of the size of the database files.

tempdb - This important file needs to be sized at 10% of that used for database files.

Backup files - The same amount of space allocated to database files needs to be made 
available for their backup.

Based on these guidelines, an SQL Server with 20,000 nodes requires a minimum of 20 GB for 
database files, 4 GB for the transaction log, 2 GB for tempdb, and another 20 GB for backups to 
provide good performance.

RAID 10 should be considered for databases with high I/O requirements. Mirroring will 
reduce the usable storage capacity by 50%.



The amount of random access memory (RAM) that a database requires depends on several factors, 
including:

MEMORY AND CPU

5

Processor speed and size can affect database performance. Individual software vendors have 
recommendations that usually provide a list of specific hardware platforms on which to run their 
databases. Using 4 to 8 cores is appropriate for smaller databases, with larger ones benefiting from 
8 to 24 cores.

The number of concurrent users - When more than 15 simultaneous users will be 
accessing and retrieving data, an additional 1 to 2 GB of RAM should be allocated for 
every five users.

Execution packages - Databases that are updated frequently benefit from additional RAM. 
In some cases, doubling the amount of available RAM can cut execution time by 50%.

Database size - A database will exhibit better performance if it has at least the minimum 
recommended amount of RAM available. That may vary based on the chosen platform. 
These are guidelines that apply for an SQL Server implementation.

Expected rate of growth - When provisioning RAM, database teams need to consider 
future growth and allow for expanding memory locations if requirements demand it.

Small production databases < 250 GB - 8 GB of RAM

Medium production databases < 1 TB - 8 GB of RAM

Databases that are up to 2 TB in size - 32 GB of RAM

Databases that are between 2 and 5 TB in size - 64 GB of RAM

Databases over 5 TB in size will improve caching speed with more 
than 64 GB of RAM

NETWORK CONSIDERATIONS
Slow network connections can be at the root of database performance issues. The speed of 
the network hardware may be beyond the scope of issues that can be directly addressed by a 
database team. They can, however, implement more efficient use of network resources, which can 
improve performance.

One area that presents optimization possibilities is how the database handles connections. Creating 
connections is an expensive operation. It takes time and requires system resources that could be 
better used elsewhere. Connection and thread pools can help minimize the expense of continually 
recreating these items.



Connection pools establish several client/server connections which are dynamically allocated on 
demand when needed by the client application. In a thread pool, threads are reused for requests 
and responses rather than creating and destroying them as required. Both techniques can be used 
to improve database performance.

CODING AND QUERY OPTIMIZATION
Provisioning or upgrading the hardware of a database server should result in improvements in 
performance. Further gains can be found by optimizing the code and queries of a database. There 
are many aspects of queries that can be investigated for possible optimization. Here are some of 
the most productive elements of database queries that can be addressed to increase performance.

6

PRIORITIZE THE QUERIES 
FOR OPTIMIZATION
Before embarking on a quest to optimize queries, it is essential to know which queries get used 
most often and which ones cost the most in system resources. It may be that addressing a small 
subset of queries can dramatically improve performance. Less critical queries can be optimized 
when time permits.

Indexes are crucial logical constructs in both relational and NoSQL databases. The way they are 
designed and used can have a tremendous impact on the speed with which the database can carry 
out a query and return its results. Having too few or too many indexes leads to different types of 
performance degradation.

Two techniques to consider are the creation of composite and clustered indexes. A composite 
index contains more than one field and is useful for queries that contain multiple fields in its 
WHERE clause. Clustered indexes determine the physical order of data in a table and are very 
efficient on columns that are searched for a range of values. Some database platforms use different 
terminology to refer to these indexing techniques.

OPTIMIZE INDEXES



MINIMIZE SQL STATEMENT PARSING
Application code should be optimized to reduce the amount of parsing required. Parsing SQL 
statements is CPU-intensive activity. One way to minimize parsing is to use stored procedures that 
are kept in a parsed form, which reduces runtime processing.

PROCESS MULTIPLE ROWS
Whenever possible, it is advisable to work with multiple rows simultaneously. Optimized 
performance is achieved when a single SQL statement is used to process all rows and perform the 
required operations on them. Only one network round-trip is necessary for this scenario, reducing 
the occurrence of bandwidth and latency issues.

KEEP DATABASE FILES ON SEPARATE 
DISKS
A relatively painless performance fix can be obtained by the effective use of multiple disks for 
database files. Storing all files on the same disk will negatively affect performance as the subsystem 
struggles to satisfy read and write requests. At a minimum, tempdb should be located on a different 
drive than the rest of the database components. The best practice is also to keep data, log, and 
backup files on discrete disks.

This structure should be implemented during the planning and development stages of a database. 
Moving the files can result in some immediate and substantial performance gains in cases where 
this was not done.

7



USING THE MOST RECENT 
DATABASE VERSION 

8

Upgrading systems to the most current version of database software can contribute to improved 
performance. Code optimization and additional features performed by the vendor may result in 
better response time and happier users. While performing an upgrade may not be a quick fix, it can 
help keep systems performing efficiently.

USE NATIVE DATABASE FEATURES 
Making use of the native database features is preferred over re-implementing them in a homegrown 
manner. Use the replication, auditing, database integrity checks, and other features that were put in 
place by the software development team of a database vendor.

There are many aspects of a database application that need to work in concert to provide 
peak performance. This fact presents multiple opportunities for database teams to address the 
bottlenecks affecting the response time of a system. A systematic review of the outlined areas can 
be instrumental in discovering modifications that can be made to provide the type of performance 
envisioned when the database was designed and implemented.



IDERA’S SOLUTION 

IDERA.com

Start for FREE

Try IDERA’S SQL Diagnostic Manager
24X7 SQL PERFORMANCE MONITORING, ALERTING AND DIAGNOSTICS

Start a free, fully-functional, 14-day trial today!	

Performance monitoring for physical, virtual, and cloud SQL Servers

Deep query analysis to identify excessive waits and resource consumption

History browsing to find and troubleshoot past issues

Adaptive & automated alerting with 100+ pre-defined and configurable alerts . 
Capacity planning to see database growth trends and minimize server sprawl . SCOM 
management pack for integration with System Center

https://www.idera.com/productssolutions/sqlserver/sqldiagnosticmanager/freetrialsubscriptionform?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=keys-to-high-performing-database
https://www.idera.com/productssolutions/sqlserver/sqldiagnosticmanager/freetrialsubscriptionform?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=keys-to-high-performing-database
https://www.idera.com/?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=keys-to-high-performing-database
https://www.idera.com/?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=keys-to-high-performing-database

