
PowerShell
eBook (3)
by Tobias Weltner

Index
by Tobias Weltner

Chapter 15. Working with the File System

Chapter 16. Managing Windows Registry

Chapter 17. Processes, Services, and
Event Logs

Instrumentation
Chapter 18. WMI: Windows Management

Chapter 19. User Management

Chapter 20. Loading .NET Libraries and
Compiling Code

03

24

40

47

63

92

03

Working with files and folders is traditionally one of
the most popular areas for administrators. PowerShell
eases transition from classic shell commands with the
help of a set of predefined "historic" aliases and
functions. So, if you are comfortable with commands
like "dir" or "ls" to list folder content, you can still use
them. Since they are just aliases - references to
PowerShell’s own cmdlets - they do not necessarily
work exactly the same anymore, though.
In this chapter, you'll learn how to use PowerShell
cmdlets to automate the most common file system
tasks.

Working with the File System

Topics Covered:
Accessing Files and Directories·

Navigating the File System

Working with Files and Directories

·

·

Chapter 15.

04

Getting to Know
Your Tools
One of the best ways to get to know your set of �le system-related PowerShell cmdlets is to simply list all aliases that point to cmdlets with the
keyword "item" in their noun part. That is so because PowerShell calls everything "item" that lives on a drive.

In addition, PowerShell provides a set of cmdlets that help dealing with path names. They all use the noun "Path", and you can use these
cmdlets to construct paths, split paths into parent and child, resolve paths or check whether �les or folders exist.

PS> Get-Alias -Definition *-item*

PS> Get-Command -Noun path

CommandType Name ModuleName Definition

Alias

Alias

Alias

Alias

Alias cpi

cp

copy Copy-Item

Copy-Item

Copy-Item

Alias cpp Copy-ItemProperty

clp Clear-ItemProperty

cli Clear-Item

Alias

Alias

Alias

Alias

Alias ii

gp

gi Get-Item

Get-ItemProperty

Invoke-Item

Alias mi Move-Item

erase Remove-Item

del Remove-Item

----------- ---------- --------------

Alias

Alias

Alias

Alias

Alias rd

ni

mv Move-Item

New-Item

Remove-Item

Alias ren Rename-Item

mp Move-ItemProperty

move Move-Item

Alias

Alias

Alias

Alias

Alias rnp

rni

rmdir Remove-Item

Rename-Item

Rename-ItemProperty

Alias rp Remove-ItemProperty

Alias si Set-Item

Alias sp Set-ItemProperty

rm Remove-Item

ri Remove-Item

Accessing Files and
Directories
Use Get-ChildItem to list the contents of a folder. There are two historic aliases: Dir and ls. Get-ChildItem handles a number of important �le
system-related tasks:

If you don't specify a path, Get-ChildItem lists the contents of the current directory. Since the current directory can vary, it is risky to use
Get-Childitem in scripts without specifying a path. Omit a path only when you use PowerShell interactively and know where your current
location actually is.

Time to put Get-ChildItem to work: to get a list of all PowerShell script �les stored in your pro�le folder, try this:

Most likely, this will not return anything because, typically, your own �les are not stored in the root of your pro�le folder. To �nd script �les
recursively (searching through all child folders), add the switch parameter -Recurse:

• Searching the �le system recursively and �nding �les

• Listing hidden �les

• Accessing �les and directory objects

• Passing �les to other cmdlets, functions, or scripts

PS> Get-ChildItem -Path $home -Filter *.ps1

PS> Get-ChildItem -Path $home -Filter *.ps1 -Recurse

This may take much longer. If you still get no result, then maybe you did not create any PowerShell script �le yet. Try searching for other �le
types. This line will get all Microsoft Word documents in your pro�le:

PS> Get-ChildItem -Path $home -Filter *.doc* -Recurse

05

CommandType Name ModuleName Definition

Cmdlet

Cmdlet

Cmdlet

Cmdlet

Cmdlet Test-Path

Split-Path

Resolve-Path Microsoft.PowerSh...

Microsoft.PowerSh...

Microsoft.PowerSh...

Join-Path Microsoft.PowerSh...

Convert-Path Microsoft.PowerSh...

...

...

...

...

...

----------- ---------- --------------

Listing Folder Contents

In addition to -Filter, there is a parameter that seems to work very similar: -Include:

PS> Get-ChildItem $home -Include *.ps1 -Recurse

You'll see some dramatic speed di�erences, though: -Filter works signi�cantly faster than -Include.

You also see functional di�erences because -Include only works right when you also use the -Recurse parameter.

The reason for these di�erences is the way these parameters work. -Filter is implemented by the underlying drive provider, so it is retrieving
only those �les and folders that match the criteria in the �rst place. That's why -Filter is fast and e�cient. To be able to use -Filter, though, the
drive provider must support it.

-Include on the contrary is implemented by PowerShell and thus is independent of provider implementations. It works on all drives, no matter
which provider is implementing that drive. The provider returns all items, and only then does -Include �lter out the items you want. This is
slower but universal. -Filter currently only works for �le system drives. If you wanted to select items on Registry drives like HKLM:\ or HKCU:\,
you must use -Include.

PS> (Measure-Command {Get-ChildItem $home -Filter *.ps1 -Recurse}).TotalSeconds

4,6830099

PS> (Measure-Command {Get-ChildItem $home -Include *.ps1 -Recurse}).TotalSeconds

28,1017376

PS> Get-ChildItem -Path $home -Filter *.doc* -Recurse -ea 0

When searching folders recursively, you may run into situations where you do not have access to a particular subfolder. Get-ChildItem then
raises an exception but continues its search. To hide such error messages, add the common parameter -Erroraction SilentlyContinue which
is present in all cmdlets, or use its short form -ea 0:

PS> Get-ChildItem c:\, d:\ -Filter *.log -Recurse -ea 0

The -Path parameter accepts multiple comma-separated values, so you could search multiple drives or folders in one line. This would �nd all
.log-�les on drives C:\ and D:\ (and takes a long time because of the vast number of folders it searches):

PS> Get-ChildItem -Path $env:windir -Name

If you just need the names of items in one directory, use the parameter -Name:

PS> Get-ChildItem -Path $env:windir | Select-Object -ExpandProperty FullName

To list only the full path of �les, use a pipeline and send the results to Select-Object to only select the content of the FullName property:

06

Choosing the Right Parameters

Attention
Some characters have special meaning to PowerShell, such as square brackets or wildcards such as '*'. If you want PowerShell to ignore
special characters in path names and instead take the path literally, use the -LiteralPath parameter instead of -Path.

-Include has some advantages, too. It understands advanced wildcards and supports multiple search criteria:

The counterpart to -Include is -Exclude. Use -Exclude if you would like to suppress certain �les. Unlike -Filter, the -Include and -Exclude
parameters accept arrays, which enable you to get a list of all image �les in your pro�le or the windows folder:

You can also use Measure-Object to count the total folder size or the size of selected �les. This line will count the total size of all .log-�les in
your windows folder:

Get-Childitem -Path $home, $env:windir -Recurse -Include *.bmp,*.png,*.jpg, *.gif -ea 0

PS> Get-ChildItem $env:windir -Filter *.log -ea 0 | Measure-Object -Property Length -Sum |
Select-Object -ExpandProperty Sum

Everything on a drive is called "Item", so to get the properties of an individual �le or folder, use Get-Item:

PSPath : Microsoft.PowerShell.Core\FileSystem::C:\Windows\explorer.exe

PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\Windows

PSChildName : explorer.exe

PSDrive : C

PSProvider : Microsoft.PowerShell.Core\FileSystem

PSIsContainer : False

PS> Get-Item $env:windir\explorer.exe | Select-Object *

-Filter looks for all files that begin with "[A-F]" and finds none:

PS> Get-ChildItem $home -Filter [a-f]*.ps1 -Recurse

PS> Get-ChildItem $home -Include [a-f]*.ps1 -Recurse

-Include understands advanced wildcards and looks for files that begin with a-f and
end with .ps1:

Getting File and Directory Items

Note
If you want to �lter results returned by Get-ChildItem based on criteria other than �le name, use Where-Object (Chapter 5).

If you want to count �les or folders, pipe the result to Measure-Object:

For example, to �nd the largest �les in your pro�le, use this code - it �nds all �les larger than 100MB:

PS> Get-ChildItem $home -Recurse | Where-Object { $_.length -gt 100MB }

PS> Get-ChildItem $env:windir -Recurse -Include *.bmp,*.png,*.jpg, *.gif -ea 0 | Measure-Object
 | Select-Object -ExpandProperty Count

6386

07

You can even change item properties provided the �le or folder is not in use, you have the proper permissions, and the property allows write
access. Take a look at this piece of code:

This will create a test �le in your temporary folder, read its creation time and then changes the creation time to November 4, 1812. Finally,
explorer opens the temporary �le so you can right-click the test �le and open its properties to verify the new creation time. Amazing, isn't it?

"Hello" > $env:temp\testfile.txt

$file = Get-Item $env:temp\testfile.txt

$file.CreationTime

$file.CreationTime = '1812/4/11 09:22:11'

Explorer $env:temp

: File : C:\Windows\explorer.exe

InternalName : explorer

OriginalFilename : EXPLORER.EXE.MUI

FileVersion : 6.1.7600.16385 (win7_rtm.090713-1255)

FileDescription : Windows Explorer

Product : Microsoft® Windows® Operating System

ProductVersion : 6.1.7600.16385

Debug : False

Patched : False

PreRelease : False

PrivateBuild : False

SpecialBuild : False

Language : English (United States)

BaseName : explorer

Mode : -a---

Name : explorer.exe

Length : 2871808

DirectoryName : C:\Windows

Directory : C:\Windows

IsReadOnly : False

Exists : True

FullName : C:\Windows\explorer.exe

Extension : .exe

CreationTime : 27.04.2011 17:02:33

CreationTimeUtc : 27.04.2011 15:02:33

LastAccessTime : 27.04.2011 17:02:33

LastAccessTimeUtc : 27.04.2011 15:02:33

LastWriteTime : 25.02.2011 07:19:30

LastWriteTimeUtc : 25.02.2011 06:19:30

Attributes : Archive

VersionInfo

08

Because Get-ChildItem returns individual �le and folder objects, Get-ChildItem can pass these objects to other cmdlets or to your own
functions and scripts. This makes Get-ChildItem an important selection command which you can use to recursively �nd all the �les you may
be looking for, across multiple folders or even drives.

For example, the next code snippet �nds all jpg �les in your Windows folder and copies them to a new folder:

Get-ChildItem �rst retrieved the �les and then handed them over to Copy-Item which copied the �les to a new destination.

PS> New-Item -Path c:\WindowsPics -ItemType Directory -ea 0

PS> Get-ChildItem $env:windir -Filter *.jpg -Recurse -ea 0 | Copy-Item -Destination
c:\WindowsPics

Passing Files to Cmdlets, Functions, or Scripts

Because Get-ChildItem does not di�erentiate between �les and folders, it may be important to limit the result of Get-ChildItem to only �les
or only folders. There are several ways to accomplish this. You can check the type of returned object, check the PowerShell PSIsContainer
property, or examine the mode property:

List directories only:

PS> Get-ChildItem | Where-Object { $_ -is [System.IO.DirectoryInfo] }

PS> Get-ChildItem | Where-Object { $_.PSIsContainer }

PS> Get-ChildItem | Where-Object { $_.Mode -like 'd*' }

List files only:

PS> Get-ChildItem | Where-Object { $_ -is [System.IO.FileInfo] }

PS> Get-ChildItem | Where-Object { $_.PSIsContainer -eq $false}

PS> Get-ChildItem | Where-Object { $_.Mode -notlike 'd*' }

Selecting Files or Folders Only

Tip
You can also combine the results of several separate Get-ChildItem commands. In the following example, two separate Get-ChildItem
commands generate two separate �le listings, which PowerShell combines into a total list and sends on for further processing in the
pipeline. The example takes all the DLL �les from the Windows system directory and all program installation directories, and then returns
a list with the name, version, and description of DLL �les:

PS> $list1 = @(Get-ChildItem $env:windir\system32*.dll)

PS> $list2 = @(Get-ChildItem $env:programfiles -Recurse -Filter *.dll)

PS> $totallist = $list1 + $list2

PS> $totallist | Select-Object -ExpandProperty VersionInfo | Sort-Object -Property FileName

ProductVersion

3,0,0,2 3,0,0,2 C:\Program Files\Bonjour\mdnsNSP.dll

2, 1, 0, 1 2, 1, 0, 1 C:\Program Files\Common Files\Microsoft Sh...

2008.1108.641...

(...)

2008.1108.641... C:\Program Files\Common Files\Microsoft Sh...

FileVersion FileName

----------- --------

09

Navigating the File
System

Where-Object can �lter �les according to other criteria as well. For example, use the following pipeline �lter if you'd like to locate only �les that
were created after May 12, 2011:

PS> Get-ChildItem $env:windir | Where-Object { $_.CreationTime -gt [datetime]::Parse
("May 12, 2011") }

You can use relative dates if all you want to see are �les that have been changed in the last two weeks:

PS> Get-ChildItem $env:windir | Where-Object { $_.CreationTime -gt (Get-Date).AddDays(-14) }

Unless you changed your prompt (see Chapter 9), the current directory is part of your input prompt. You can �nd out the current location
by calling Get-Location:

PS> Get-Location

Path

Path

C:\Users\Tobias

If you want to navigate to another location in the �le system, use Set-Location or the Cd alias:

One directory higher (relative):

PS> Cd ..

In the parent directory of the current drive (relative):

PS> Cd \

In a specified directory (absolute):

PS> Cd c:\windows

Take directory name from environment variable (absolute):

PS> Cd $env:windir

Take directory name from variable (absolute):

PS> Cd $home

10

PS> Resolve-Path .\test.txt

Path

C:\Users\Tobias Weltner\test.txt

PS> Resolve-Path $pshome*.ps1xml

Path

C:\Windows\System32\WindowsPowerShell\v1.0\Certificate.format.ps1xml

C:\Windows\System32\WindowsPowerShell\v1.0\DotNetTypes.format.ps1xml

C:\Windows\System32\WindowsPowerShell\v1.0\FileSystem.format.ps1xml

C:\Windows\System32\WindowsPowerShell\v1.0\Help.format.ps1xml

C:\Windows\System32\WindowsPowerShell\v1.0\PowerShellCore.format.ps1xml

C:\Windows\System32\WindowsPowerShell\v1.0\PowerShellTrace.format.ps1xml

C:\Windows\System32\WindowsPowerShell\v1.0\Registry.format.ps1xml

C:\Windows\System32\WindowsPowerShell\v1.0\types.ps1xml

Paths can either be relative or absolute. Relative path speci�cations depend on the current directory, so .\test.txt always refers to the
test.txt �le in the current directory. Likewise, ..\test.txt refers to the test.txt �le in the parent directory.

Relative path speci�cations are useful, for example, when you want to use library scripts that are located in the same directory as your work
script. Your work script will then be able to locate library scripts under relative paths—no matter what the directory is called. Absolute paths
are always unique and are independent of your current directory.

Whenever you use relative paths, PowerShell must convert these relative paths into absolute paths. That occurs automatically when you
submit a relative path to a cmdlet. You can resolve relative paths manually, too, by using Resolve-Path.

Be careful though: Resolve-Path only works for �les that actually exist. If there is no �le in your current directory that's called test.txt,
Resolve-Path errors out.

Resolve-Path can also have more than one result if the path that you specify includes wildcard characters. The following call will retrieve the
names of all ps1xml �les in the PowerShell home directory:

The current directory can be “pushed” onto a “stack” by using Push-Location. Each Push-Location adds a new directory to the top of the
stack. Use Pop-Location to get it back again.

Relative and Absolute Paths

Converting Relative Paths into Absolute Paths

Pushing and Popping Directory Locations

11

Table 15.2: Important special characters used for relative path specifications

. Current directory ii . Opens the current directory in Windows Explorer

.. Parent directory Cd .. Changes to the parent directory

\ Root directory Cd \ Changes to the top-most directory of a drive

~ Home directory Cd ~ Changes to the directory that PowerShell initially
creates automatically

Character Meaning Example Result

PS> [Environment]::GetFolderPath("Desktop")

C:\Users\Tobias Weltner\Desktop

Put a link on the Desktop:

PS> $path = [Environment]::GetFolderPath("Desktop") + "\EditorStart.lnk"

PS> $comobject = New-Object -ComObject WScript.Shell

PS> $link = $comobject.CreateShortcut($path)

So, to perform a task that forces you to temporarily leave your current directory, �rst type Push-Location to store your current location.
Then, you can complete your task and when use Pop-Location to return to where you were before.

There are many standard folders in Windows, for example the Windows folder itself, your user pro�le, or your desktop. Since the exact location
of these paths can vary depending on your installation setup, it is bad practice to hard-code these paths into your scripts - hardcoded system
paths may run well on your machine and break on another.

That's why it is important to understand where you can �nd the exact location of these folders. Some are covered by the Windows
environment variables, and others can be retrieved via .NET methods.

Environment variables cover only the most basic system paths. If you'd like to put a �le directly on a user’s Desktop, you'll need the path to the
Desktop which is missing in the list of environment variables. The GetFolderPath() method of the System.Environment class of the .NET
framework (Chapter 6) can help. The following code illustrates how you can put a link on the Desktop.

Special Directories and System Paths

Tip
Cd $home will always take you back to your home directory. Also, both Push-Location and Pop-Location support the -Stack parameter.
This enables you to create as many stacks as you want, such as one for each task. Push-Location -Stack job1 puts the current directory
not on the standard stack, but on the stack called “job1”; you can use Pop-Location -Stack job1 to restore the initial directory from
this stack.

12

Table 15.3: Important Windows directories that are stored in environment variables

Application data Application data locally stored
on the machine

$env:localappdata

User profile User directory $env:userprofile

Data used in common Directory for data used by all
programs

$env:commonprogramfiles

Public directory Common directory of all local users $env:public

Program directory Directory in which programs are
installed

$env:programfiles

Roaming Profiles Application data for roaming profiles $env:appdata

Temporary files (private) Directory for temporary files of the
user

$env:tmp

Temporary files Directory for temporary files $env:temp

Windows directory Directory in which Windows is
installed

$env:windir

Special directory Description Access

PS> $link.targetpath = "notepad.exe"

PS> $link.IconLocation = "notepad.exe,0"

PS> $link.Save()

PS> [System.Environment+SpecialFolder] | Get-Member -Static -MemberType Property

TypeName: System.Environment+SpecialFolder

Name MemberType Definition

ApplicationData Property static System.Environment+SpecialFolder ApplicationData
{get;}

CommonApplicationData Property static System.Environment+SpecialFolder
CommonApplicationData ...

CommonProgramFiles Property static System.Environment+SpecialFolder
CommonProgramFiles {get;}

Cookies Property static System.Environment+SpecialFolder Cookies {get;}

Desktop Property static System.Environment+SpecialFolder Desktop {get;}

DesktopDirectory Property static System.Environment+SpecialFolder
DesktopDirectory {get;}

Favorites Property static System.Environment+SpecialFolder Favorites {get;}

History Property static System.Environment+SpecialFolder History {get;}

InternetCache Property static System.Environment+SpecialFolder InternetCache
{get;}

LocalApplicationData Property static System.Environment+SpecialFolder
LocalApplicationData {...

MyComputer Property static System.Environment+SpecialFolder MyComputer
{get;}

MyDocuments Property static System.Environment+SpecialFolder MyDocuments
{get;}

MyMusic Property static System.Environment+SpecialFolder MyMusic {get;}

MyPictures Property static System.Environment+SpecialFolder MyPictures
{get;}

Personal Property static System.Environment+SpecialFolder Personal {get;}

ProgramFiles Property static System.Environment+SpecialFolder ProgramFiles
{get;}

Programs Property static System.Environment+SpecialFolder Programs {get;}

Recent Property static System.Environment+SpecialFolder Recent {get;}

SendTo Property static System.Environment+SpecialFolder SendTo {get;}

StartMenu Property static System.Environment+SpecialFolder StartMenu {get;}

Startup Property static System.Environment+SpecialFolder Startup {get;}

System Property static System.Environment+SpecialFolder System {get;}

Templates Property static System.Environment+SpecialFolder Templates {get;}

---- ---------- ----------

To get a list of system folders known by GetFolderPath(), use this code snippet:

13

function Map-Profiles {

[System.Environment+SpecialFolder] | Get-Member -Static -MemberType Property |

ForEach-Object {

New-PSDrive -Name $_.Name -PSProvider FileSystem -Root ([Environment]::GetFolderPath($_.Name))
 -Scope

New-PSDrive -Name $_.Name -PSProvider FileSystem -Root ([Environment]::GetFolderPath($_.Name))
-Scope

Global

}

PS> [System.Environment+SpecialFolder] | Get-Member -Static -MemberType
Property | ForEach-Object {"{0,-25}= {1}" -f $_.name, [Environment]
::GetFolderPath($_.Name) }

ApplicationData = C:\Users\Tobias Weltner\AppData\Roaming

CommonApplicationData = C:\ProgramData

CommonProgramFiles = C:\Program Files\Common Files

Cookies = C:\Users\Tobias Weltner\AppData\Roaming\Microsoft
 \Windows\Cookies

Desktop = C:\Users\Tobias Weltner\Desktop

DesktopDirectory = C:\Users\Tobias Weltner\Desktop

Favorites = C:\Users\Tobias Weltner\Favorites

Recent = C:\Users\Tobias Weltner\AppData\Roaming\Microsoft
 \Windows\Recent

SendTo = C:\Users\Tobias Weltner\AppData\Roaming\Microsoft
 \Windows\SendTo

StartMenu = C:\Users\Tobias Weltner\AppData\Roaming\Microsoft
 \Windows\Start Menu

Startup = C:\Users\Tobias Weltner\AppData\Roaming\Microsoft
 \Windows\Start Menu\Programs\Startup

System = C:\Windows\system32

Templates = C:\Users\Tobias Weltner\AppData\Roaming\Microsoft
 \Windows\Templates

History = C:\Users\Tobias Weltner\AppData\Local\Microsoft
 \Windows\History

LocalApplicationData = C:\Users\Tobias Weltner\AppData\Local

MyComputer =

MyDocuments = C:\Users\Tobias Weltner\Documents

MyMusic = C:\Users\Tobias Weltner\Music

MyPictures = C:\Users\Tobias Weltner\Pictures

Personal = C:\Users\Tobias Weltner\Documents

ProgramFiles = C:\Program Files

Programs = C:\Users\Tobias Weltner\AppData\Roaming\Microsoft
 \Windows\Start Menu\Programs

InternetCache = C:\Users\Tobias Weltner\AppData\Local\Microsoft
 \Windows\Temporary Internet Files

And this would get you a list of all system folders covered plus their actual paths:

You can use this to create a pretty useful function that maps drives to all important �le locations. Here it is:

14

}

Map-Profiles

PS> Get-ChildItem cookies:

PS> Get-ChildItem cookies: | del -WhatIf

When you run this function, it adds a bunch of new drives. You can now easily take a look at your browser cookies - or even get rid of them:

PS> If ((Test-Path $profile) -eq $false) { New-Item $profile -ItemType File -Force }

PS> Notepad $profile

PS> $path = [Environment]::GetFolderPath("Desktop") + "\file.txt"

PS> $path

C:\Users\Tobias Weltner\Desktop\file.txt

Note that all custom drives are added only for your current PowerShell session. If you want to use them daily, make sure you add Map-Profiles
and its call to your pro�le script:

Path names are plain-text, so you can set them up any way you like. To put a �le onto your desktop, you could add the path segments
together using string operations:

PS> $path = Join-Path ([Environment]::GetFolderPath("Desktop")) "test.txt"

PS> $path

C:\Users\Tobias Weltner\Desktop\test.txt

A more robust way is using Join-Path because it keeps track of the backslashes:

PS> $path = [System.IO.Path]::Combine([Environment]::GetFolderPath("Desktop"), "test.txt")

PS> $path

C:\Users\Tobias Weltner\Desktop\test.txt

Or, you can use .NET framework methods:

PS> Get-ChildItem desktop:

You can check content of your desktop:

PS> Get-PSDrive

And if you'd like to see all the drives accessible to you, run this command:

Constructing Paths

15

PS> [System.IO.Path]::ChangeExtension("test.txt", "ps1")

test.ps1

The System.IO.Path class includes a number of additionally useful methods that you can use to put together paths or extract information
from paths. Just prepend [System.IO.Path]:: to methods listed in Table 15.4, for example:

16

Table 15.4: Methods for constructing paths

ChangeExtension() Changes the file extension ChangeExtension("test.txt","ps1")

Combine() Combines path strings;
corresponds to Join-Path

Combine("C:\test", "test.txt")

GetDirectoryName() Returns the directory;
corresponds to Split-Path
-Parent

GetDirectoryName("c:\test\file
.txt")

GetExtension() Returns the file extension GetExtension("c:\test\file.txt")

GetFileName() Returns the file name;
corresponds to Split-Path
-Leaf

GetFileName("c:\test\file.txt")

GetFileNameWithoutExtension() Returns the file name
without the file extension

GetFileNameWithoutExtension("c:\
test\file.txt")

GetFullPath() Returns the absolute path GetFullPath(".\test.txt")

GetInvalidFileNameChars() Lists all characters that
are not allowed in a
file name

GetInvalidFileNameChars()

GetInvalidPathChars() Lists all characters that
are not allowed in a path

GetInvalidPathChars()

GetPathRoot() Gets the root directory;
corresponds to Split-Path
-Qualifier

GetPathRoot("c:\test\file.txt")

GetRandomFileName() Returns a random file name GetRandomFileName()

GetTempFileName() Returns a temporary file
name in the Temp directory

GetTempFileName()

GetTempPath() Returns the path of the
directory for temporary
files

GetTempPath()

HasExtension() True, if the path includes
a file extension

HasExtension("c:\test\file.txt")

IsPathRooted() True, if the path is
absolute; corresponds to
Split-Path -isabsolute

IsPathRooted("c:\test\file.txt")

Method Description Example

Working with Files and
Directories

"md" is the predefined function and creates new directories:

PS> md Test1

Directory: Microsoft.PowerShell.Core\FileSystem::C:\users\Tobias Weltner

Mode

---- ------------- ------ ----

LastWriteTime Length Name

d---- 12.10.2011 17:14 Test1

"New-Item" can do that, too, but takes more effort:

PS> New-Item Test2 -ItemType Directory

Directory: Microsoft.PowerShell.Core\FileSystem::C:\users\Tobias Weltner

Mode

---- ------------- ------ ----

LastWriteTime Length Name

d---- 12.10.2011 17:14 Test2

The cmdlets Get-ChildItem and Get-Item can get you �le and directory items that already exist. In addition, you can create new �les and
directories, rename them, �ll them with content, copy them, move them, and, of course, delete them.

The easiest way to create new directories is to use the Md function, which invokes the cmdlet New-Item internally and speci�es as -ItemType
parameter the Directory value:

Creating New Directories

Tip
You can also create several sub-directories in one step as PowerShell automatically creates all the directories that don't exist yet in the
speci�ed path:

Three folders will be created with one line.

PS> md test\subdirectory\somethingelse

17

PS> New-Item "new file.txt" -ItemType File

Directory: Microsoft.PowerShell.Core\FileSystem::C:\users\Tobias Weltner

Mode

---- ------------- ------ ----

LastWriteTime Length Name

-a--- 10.12.2011 17:16 new file.txt0

Get-ChildItem > info1.txt

.\info1.txt

Get-ChildItem | Out-File info2.txt

.\info2.txt

Get-ChildItem | Set-Content info3.txt

.\info3.txt

Set-Content info4.txt (Get-Date)

.\info4.txt

You can use New-Item to also create new �les. Use -Value if you want to specify text to put into the new �le, or else you create an empty �le:

If you add the -Force parameter, creating new �les with New-Item becomes even more interesting - and a bit dangerous, too. The -Force
parameter will overwrite any existing �le, but it will also make sure that the folder the �le is to be created it exists. So, New-Item can create
several folders plus a �le if you use -Force.

Another way to create �les is to use old-fashioned redirection using the ">" and ">>" operators, Set-Content or Out-File.

PS> Get-ChildItem | ConvertTo-HTML | Out-File report1.hta

PS> .\report1.hta

PS> Get-ChildItem | ConvertTo-HTML | Set-Content report2.hta

PS> .\report2.htm

As it turns out, redirection and Out-File work very similar: when PowerShell converts pipeline results, �le contents look just like they would if
you output the information in the console. Set-Content works di�erently: it does not use PowerShell’s sophisticated ETS (Extended Type
System) to convert objects into text. Instead, it converts objects into text by using their own private ToString() method - which provides much
less information. That is because Set-Content is not designed to convert objects into text. Instead, this cmdlet is designed to write text to a �le.

You can use all of these cmdlets to create text �les. For example, ConvertTo-HTML produces HTML but does not write it to a �le. By sending
that information to Out-File, you can create HTML- or HTA-�les and display them.

Creating New Files

Tip
If you want to control the "columns" (object properties) that are converted into HTML, simply use Select-Object (Chapter 5):

If you rather want to export the result as a comma-separated list, use Export-Csv cmdlet instead of ConvertTo-HTML | Out-File.
Don't forget to use its -UseCulture parameter to automatically use the delimiter that is right for your culture.

Get-ChildItem | Select-Object name, length, LastWriteTime | ConvertTo-HTML | Out-File report.htm

.\report.htm

18

PS> Get-Content $env:windir\windowsupdate.log

Use Get-Content to retrieve the contents of a text-based �le:

PS> ${c:\windows\windowsupdate.log}

There is a shortcut that uses variable notation if you know the absolute path of the �le:

PS> Get-Content $env:windir\windowsupdate.log | Select-Object -First 10

However, this shortcut usually isn’t very practical because it doesn’t allow any variables inside curly brackets. You would have to hardcode
the exact path to the �le into your scripts.
Get-Content reads the contents of a �le line by line and passes on every line of text through the pipeline. You can add Select-Object if you
want to read only the �rst 10 lines of a very long �le:

PS> Get-Content $env:windir\windowsupdate.log | Select-String "successfully installed"

You can also use -Wait with Get-Content to turn the cmdlet into a monitoring mode: once it read the entire �le, it keeps monitoring it, and
when new content is appended to the �le, it is immediately processed and returned by Get-Content. This is somewhat similar to "tailing"
a �le in Unix.
Finally, you can use Select-String to �lter information based on keywords and regular expressions. The next line gets only those lines from
the windowsupdate.log �le that contain the phrase " successfully installed ":

PS> Get-Content $env:windir\windowsupdate.log -Encoding UTF8 | Select-String "successfully
installed" | Out-File $env:temp\report.txt

PS> Invoke-Item $env:temp\report.txt

Note that Select-String will change the object type to a so-called MatchInfo object. That's why when you forward the �ltered information to
a �le, the result lines are cut into pieces:

Reading the Contents of Text Files

To add content to an existing �le, again you can use various methods. Either use the appending redirection operator ">>", or use Add-Content.
You can also pipe results to Out-File and use its -Append parameter to make sure it does not overwrite existing content.

There is one thing you should keep in mind, though: do not mix these methods, stick to one. The reason is that they all use di�erent default
encodings, and when you mix encodings, the result may look very strange:

All three cmdlets support the -Encoding parameter that you can use to manually pick an encoding. In contrast, the old redirection
operators have no way of specifying encoding which is why you should avoid using them.

PS> Set-Content info.txt "First line"

PS> "Second line" >> info.txt

PS> Add-Content info.txt "Third line"

PS> Get-Content info.txt

First Line

S e c o n d L i n e

Third line

19

PS> Get-Content $env:windir\windowsupdate.log -Encoding UTF8 | Select-String "successfully
installed" | Select-Object -ExpandProperty Line | Out-File $env:temp\report.txt

PS> Invoke-Item $env:temp\report.txt

To turn the results delivered by Select-String into real text, make sure you pick the property Line from the MatchInfo object which holds the
text line that matched your keyword:

PS> Copy-Item $home*.ps1 ([Environment]::GetFolderPath("Desktop"))

Move-Item and Copy-Item perform moving and copying operations. You may use wildcard characters with them. The following line copies
all PowerShell scripts from your home directory to the Desktop:

PS> Get-ChildItem -Filter *.ps1 -Recurse | Copy-Item -Destination ([Environment]::GetFolderPath
("Desktop"))}

Use Get-Childitem to copy recursively. Let it �nd the PowerShell scripts for you, and then pass the result on to Copy-Item: Before you run this
line you should be aware that there may be hundreds of scripts, and unless you want to completely clutter your desktop, you may want to
�rst create a folder on your desktop and then copy the �les into that folder.

Use Import-Csv if you want to process information from comma-separated lists in PowerShell. For example, you could export an Excel
spreadsheet as CSV-�le and then import the data into PowerShell. When you use Get-Content to read a CSV-�le, you'd see the plain text.
A much better way is to use Import-CSV. It honors the delimiter and returns objects. Each column header turns into an object property.

To successfully import CSV �les, make sure to use the parameter -UseCulture or -Delimiter if the list is not comma-separated. Depending on
your culture, Excel may have picked a di�erent delimiter than the comma, and -UseCulture automatically uses the delimiter that Excel used.

Processing Comma-Separated Lists

Moving and Copying Files and Directories

PS> Set-Content $env:temp\testfile.txt "Hello,this,is,an,enumeration"

file opens in notepad:

PS> Invoke-Item $env:temp\testfile.txt

file opens in Excel now:

PS> Rename-Item $env:temp\testfile.txt testfile.csv

PS> Invoke-Item $env:temp\testfile.csv

Use Rename-Item if you want to rename �les or folders. Renaming �les or folders can be dangerous, so do not rename system �les or else
Windows may stall.

Renaming Files and Directories

20

PS> Get-ChildItem | ForEach-Object { Rename-Item $_.Name $_.Name.Replace('-temporary', '') }

Because Rename-Item can be used as a building block in the pipeline, it provides simple solutions to complex tasks. For example, if you wanted
to remove the term “-temporary” from a folder and all its sub-directories, as well as all the included �les, this instruction will su�ce:

PS> Get-ChildItem | Where-Object { $_.Name -like "*-temporary" } | ForEach-Object { Rename-Item
$_.Name $_.Name.replace('-temporary', '') }

This line would now rename all �les and folders, even if the term '"-temporary" you're looking for isn't even in the �le name. So, to speed things
up and avoid errors, use Where-Object to focus only on �les that carry the keyword in its name:

When you look at the di�erent code examples, note that ForEach-Object is needed only when a cmdlet cannot handle the input from the
upstream cmdlet directly. In these situations, use ForEach-Object to manually feed the incoming information to the appropriate cmdlet
parameter.
Most �le system-related cmdlets are designed to work together. That's why Rename-Item knows how to interpret the output from
Get-ChildItem. It is "Pipeline-aware" and does not need to be wrapped in ForEach-Object.

PS> Get-ChildItem | $_.Name -like '*-temporary' } | Rename-Item { $_.Name.replace('-temporary',
 '') }

Rename-Item even accepts a script block, so you could use this code as well:

Bulk Renames

Create an example file:

PS> $file = New-Item testfile.txt -ItemType file

There is no write protection:

PS> $file.isReadOnly

False

Activate write protection:

PS> $file.isReadOnly = $true

PS> $file.isReadOnly

True

Write-protected file may be deleted only by using the –Force parameter:

PS> del testfile.txt

+ del <<<< testfile.txt

PS> del testfile.txt -Force

Remove-Item : Cannot remove item C:\Users\Tobias Weltner\testfile.txt: Not enough permission to
perform operation.

At line:1 char:4

Use Remove-Item or the Del alias to remove �les and folders. If a �le is write-protected, or if a folder contains data, you'll have to con�rm the
operation or use the -Force parameter.

Deleting Files and Directories

21

Create a test directory:

md testdirectory

Create a file in the directory:

PS> Set-Content .\testdirectory\testfile.txt "Hello"

Delete directory:

PS> del testdirectory

Confirm

The item at "C:\Users\Tobias Weltner\Sources\docs\testdirectory" has children and the Recurse
parameter was not specified. If you continue, all children will be removed with the item. Are
you sure you want to continue?
[Y] Yes [A] Yes to All [N] No [K] No to All [H] Suspend [?] Help (default is "Y"):

Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner\Sources\docs

Mode

---- ------------- ------ ----

LastWriteTime Length Name

d---- 13.10.2011 13:31 testdirectory

PS> Get-Childitem ([Environment]::GetFolderPath('Recent')) | Remove-Item -WhatIf

You can as well put this in one line, too:

PS> Remove-Item testdirectory -Recurse

To delete folders without con�rmation, add the parameter -Recurse:

PS> $recents = [Environment]::GetFolderPath('Recent')

PS> Remove-Item $recents*.* -WhatIf

PowerShell requests con�rmation whenever you attempt to delete a folder that is not empty. Only the deletion of empty folders does not
require con�rmation:

Use wildcard characters if you want to delete a folder content but not the folder itself. This line, for example, will empty the Recent folder that
keeps track of �les you opened lately and - over time - can contain hundreds of lnk-�les.
Because deleting �les and folders is irreversible, be careful. You can always simulate the operation by using -WhatIf to see what happens -
which is something you should do often when you work with wildcards because they may a�ect many more �les and folders than you
initially thought.

This however would also delete subfolders contained in your Recent folder because Get-ChildItem lists both �les and folders.
If you are convinced that your command is correct, and that it will delete the correct �les, repeat the statement without -WhatIf. Or, you could
use -Confirm instead to manually approve or deny each delete operation.

Deleting Directory Contents

Deleting Directories Plus Content

22

Table 15.1: Overview of the most important file system commands

ac Adds the contents of a file Add-Content

cls, clear Clears the console window Clear-Host

cli Clears file of its contents, but not the file
itself

Clear-Item

copy, cp, cpi Copies file or directory Copy-Item

Dir, ls, gci Lists directory contents Get-ChildItem

type, cat, gc Reads contents of text-based file Get-Content

gi Accesses specific file or directory Get-Item

rni, ren Renames file or directory Rename-Item

rvpa Resolves relative path or path including wildcard
characters

Resolve-Path

sp Sets property of file or directory Set-ItemProperty

Cd, chdir, sl Changes to specified directory Set-Location

- Extracts a specific part of a path like the parent
path, drive, or file name

Split-Path

- Returns True if the specified path exists Test-Path

gp Reads property of a file or directory Get-ItemProperty

mi, mv, move Moves files and directories Move-Item

ni Creates new file or new directory New-Item

ri, rm, rmdir, del,
erase, rd

Deletes empty directory or file Remove-Item

ii Invokes file or directory using associated Windows
program

Invoke-Item

- Joins two parts of a path into one path, for
example, a drive and a file name

Join-Path

Alias Description Cmdlet

23

24

Thanks to PowerShells universal "Provider" concept,
you can navigate the Windows Registry just as you
would the file system. In this chapter, you will learn
how to read and write Registry keys and Registry
values.

Managing Windows Registry

Topics Covered:
Using Providers·

Searching for Keys

Searching for Values

Reading One Registry Value

·

·

·

Reading Multiple Registry Values·

Reading Multiple Keys and Values
Creating Registry Keys

Deleting Registry Keys

·

·

·
Creating Values

Securing Registry Keys

·

·

Chapter 16.

Using Providers

PS> Get-Command -Noun Item*

CommandType Name ModuleName Definition

Cmdlet Clear-Item Microsoft.PowerSh... ...

Cmdlet Clear-ItemProperty Microsoft.PowerSh... ...

----------- ---------- --------------

Cmdlet Copy-Item Microsoft.PowerSh... ...

Cmdlet Copy-ItemProperty Microsoft.PowerSh... ...

Cmdlet Get-Item Microsoft.PowerSh... ...

Cmdlet Get-ItemProperty Microsoft.PowerSh... ...

Cmdlet Invoke-Item Microsoft.PowerSh... ...

Cmdlet Move-Item Microsoft.PowerSh... ...

Cmdlet Move-ItemProperty Microsoft.PowerSh... ...

Cmdlet New-Item Microsoft.PowerSh... ...

Cmdlet New-ItemProperty Microsoft.PowerSh... ...

Cmdlet Remove-Item Microsoft.PowerSh... ...

Cmdlet Remove-ItemProperty Microsoft.PowerSh... ...

Cmdlet Rename-Item Microsoft.PowerSh... ...

Cmdlet Rename-ItemProperty Microsoft.PowerSh... ...

Cmdlet Set-Item Microsoft.PowerSh... ...

Cmdlet Set-ItemProperty Microsoft.PowerSh... ...

To access the Windows Registry, there are no special cmdlets. Instead, PowerShell ships with a so-called provider named "Registry".
A provider enables a special set of cmdlets to access data stores. You probably know these cmdlets already: they are used to manage content
on drives and all have the keyword "item" in their noun part:

PS> Get-Alias -Definition *-Item*

CommandType Name ModuleName Definition

Alias cli Clear-Item

----------- ---------- --------------

Many of these cmdlets have historic aliases, and when you look at those, the cmdlets probably become a lot more familiar:

Attention
The Registry stores many crucial Windows settings. That's why it's so cool to read and sometimes change information in the Windows
Registry: you can manage a lot of con�guration settings and sometimes tweak Windows in ways that are not available via the user
interface.

However, if you mess things up - change the wrong values or deleting important settings - you may well permanently damage your
installation. So, be very careful, and don't change anything that you do not know well.

25

Name Capabilities Drives

Alias

Environment

FileSystem

Function

Registry ShouldProcess

ShouldProcess

Filter, ShouldProcess {C, E, S, D}

{Function}

{HKLM, HKCU}

ShouldProcess {Env}

ShouldProcess {Alias}

---- ------------------

Get-PSProvider

Alias clp Clear-ItemProperty

Alias copy Copy-Item

Alias cp Copy-Item

Alias cpi Copy-Item

Alias cpp Copy-ItemProperty

Alias del Remove-Item

Alias erase Remove-Item

Alias gi Get-Item

Alias gp Get-ItemProperty

Alias ii Invoke-Item

Alias mi Move-Item

Alias move Move-Item

Alias mp Move-ItemProperty

Alias mv Move-Item

Alias ni New-Item

Alias rd Remove-Item

Alias ren Rename-Item

Alias ri Remove-Item

Alias rm Remove-Item

Alias rmdir Remove-Item

Alias rni Rename-Item

Alias rnp Rename-ItemProperty

Alias rp Remove-ItemProperty

Alias si Set-Item

Alias sp Set-ItemProperty

Get-PSProvider gets a list of all available providers. Your list can easily be longer than in the following example. Many PowerShell extensions
add additional providers. For example, the ActiveDirectory module that ships with Windows Server 2008 R2 (and the RSAT tools for
Windows 7) adds a provider for the Active Directory. Microsoft SQL Server (starting with 2007) comes with an SQLServer provider.

Available Providers

Dir HKLM:\Software

Thanks to the "Registry" provider, all of these cmdlets (and their aliases) can also work with the Registry. So if you wanted to list the keys of
HKEY_LOCAL_MACHINE\Software, this is how you'd do it:

26

Variable

Certificate ShouldProcess {cert}

ShouldProcess {Variable}

SKC Name Property

2 AppEvents {}

VC

0

--- --------------

Cd HKCU:

Dir

Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER

7 Console {CurrentPage}1

15 Control Panel {}0

0 Environment {TEMP, TMP}2

4 EUDC {}0

1 Identities {Identity Ordinal, Migrated7, Last ...6

3 Keyboard Layout {}0

0 Network {}0

4 Printers {}0

38 Software {(default)}1

2 System {}0

0 SessionInformation {ProgramCount}1

1 Volatile Environment {LOGONSERVER, USERDOMAIN, USERNAME,...8

What's interesting here is the “Drives” column, which lists the drives that are managed by a respective provider. As you see, the registry
provider manages the drives HKLM: (for the registry root HKEY_LOCAL_MACHINE) and HKCU: (for the registry root HKEY_CURRENT
_USER). These drives work just like traditional �le system drives. Check this out:

27

Table 16.2: Default providers

You can navigate like in the �le system and dive deeper into subfolders (which here really are registry keys).

ri, rm, rmdir, del,
erase, rd

Description

Alias Manages aliases, which enable you to address a
command under another name. You'll learn more about
aliases in Chapter 2.

Dir Alias:
$alias:Dir

Environment Provides access to the environment variables of the
system. More in Chapter 3.

Dir env:
$env:windir

Function Lists all defined functions. Functions operate much
like macros and can combine several commands under one
name. Functions can also be an alternative to aliases
and will be described in detail in Chapter 9.

Dir function:
$function:tabexpansion

FileSystem Provides access to drives, directories, and files. Dir c:
$(c:\autoexec.bat)

Registry Provides access to branches of the Windows Registry. Dir HKCU:
Dir HKLM:

Variable Manages all the variables that are defined in the
PowerShell console. Variables are covered in Chapter 3.

Dir variable:
$variable:pshome

Certificate Provides access to the certificate store with all its
digital certificates. These are examined in detail in
Chapter 10.

Dir cert:
Dir cert: -recurse

Provider Example

PowerShell comes with two drives built-in that point to locations in the Windows Registry: HKLM: and HKCU:.

Creating Drives

Get-PSDrive -PSProvider Registry

Name

---- -------- ------ ---------------

Provider Root CurrentLocation

HKCU Registry HKEY_CURRENT_USER

HKLM Registry HKEY_LOCAL_MACHINE

Actually, you do not need PowerShell drives at all to access the Registry. In many scenarios, it can be much easier to work with original
Registry paths. To make this work, prepend the paths with the provider names like in the example below:

Using Provider Names Directly

Dir HKLM:\Software

Dir Registry::HKEY_LOCAL_MACHINE\Software

Dir Registry::HKEY_CLASSES_ROOT\.ps1

Dir Registry::HKEY_USERS

With this technique, you can even list all the Registry hives:

Dir Registry::

That's a bit strange because when you open the Registry Editor regedit.exe, you'll see that there are more than just two root hives. If you
wanted to access another hive, let's say HKEY_USERS, you'd have to add a new drive like this:

New-PSDrive -Name HKU -PSProvider Registry -Root HKEY_USERS

Dir HKU:

You may not have access to all keys due to security settings, but your new drive HKU: works �ne. Using New-PSDrive, you now can access all
parts of the Windows Registry. To remove the drive, use Remove-PSDrive (which only works if HKU: is not the current drive in your
PowerShell console):

Remove-PSDrive HKU

Tip
You can of course create additional drives that point to speci�c registry keys that you may need to access often.

Note that PowerShell drives are only visible inside the session you de�ned them. Once you close PowerShell, they will automatically get
removed again. To keep additional drives permanently, add the New-PSDrive statements to your pro�le script so they get automatically
created once you launch PowerShell.

New-PSDrive InstalledSoftware registry 'HKLM:\Software\Microsoft\Windows\CurrentVersion
\Uninstall'

Dir InstalledSoftware:

28

Searching for Keys
Get-ChildItem can list all subkeys of a key, and it can of course use recursion to search the entire Registry for keys with speci�c keywords.

The registry provider doesn't support �lters, though, so you cannot use the parameter -Filter when you search the registry. Instead,
use -Include and -Exclude. For example, if you wanted to �nd all Registry keys that include the word “PowerShell”, you could search using:

Note that this example searches both HKCU: and HKLM:. The error action is set to SilentlyContinue because in the Registry, you will run into
keys that are access-protected and would raise ugly "Access Denied" errors. All errors are suppressed that way.

PS> Get-ChildItem HKCU:, HKLM: -Recurse -Include *PowerShell* -ErrorAction SilentlyContinue |
Select-Object -ExpandProperty Name

HKEY_CURRENT_USER\Console\%SystemRoot%_System32_WindowsPowerShell_v1.0_powershell.exe

HKEY_CURRENT_USER\Software\Microsoft\ADs\Providers\LDAP\CN=Aggregate,CN=Schema,CN=Configuration,
DC=powershell,DC=local

HKEY_CURRENT_USER\Software\Microsoft\PowerShell

HKEY_CURRENT_USER\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell

Searching for Values
Since Registry values are not interpreted as separate items but rather are added to keys as so-called ItemProperties, you cannot use
Get-ChildItem to search for Registry values. You can search for values indirectly, though. Here is some code that �nds all Registry keys that
have at least one value with the keyword "PowerShell":

If you want to �nd all keys that have a value with the keyword in its data, try this:

PS> Get-ChildItem HKCU:, HKLM: -Recurse -ea 0 | Where-Object { $_.GetValueNames() |
Where-Object { $_ -like '*PowerShell*' } }

Reading One Registry
Value
If you need to read a speci�c Registry value in a Registry key, use Get-ItemProperty. This example reads the registered owner:

PS> Get-ItemProperty -Path 'HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion' -Name
RegisteredOwner

RegisteredOwner Tim Telbert :

PS> Get-ChildItem HKCU:, HKLM: -Recurse -ea 0 | Where-Object { $key = $_; $_.GetValueNames() |
ForEach-Object { $key.GetValue($_) } | Where-Object { $_ -like '*PowerShell*' } }

29

PS> Get-ItemProperty -Path 'HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion' -Name
ProductName, EditionID, CSDVersion, RegisteredOwner | Select-Object -Property ProductName,
EditionID, CSDVersion, RegisteredOwner

ProductName

----------- --------- ---------- ---------------

EditionID CSDVersion RegisteredOwner

Windows 7 Ultimate Ultimate Service Pack 1 Tim Telbert

PS> Get-ItemProperty -Path 'HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion' |
Select-Object -Property ProductName, EditionID, CSDVersion, RegisteredOwner

ProductName

----------- --------- ---------- ---------------

EditionID CSDVersion RegisteredOwner

Windows 7 Ultimate Ultimate Service Pack 1 Tim Telbert

Values
Reading Multiple Registry

Maybe you'd like to read more than one Registry value. Registry keys can hold an unlimited number of values. The code is not much
di�erent from before. Simply replace the single Registry value name with a comma-separated list, and again use Select-Object to focus only
on those. Since this time you are reading multiple properties, use -Property instead of –ExpandProperty parameter.

Or, a little simpler:

Unfortunately, the Registry provider adds a number of additional properties so you don't get back the value alone. Add another
Select-Object to really get back only the content of the value you are after:

PS> Get-ItemProperty -Path 'HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion' -Name
RegisteredOwner | Select-Object -ExpandProperty RegisteredOwner

Tim Telbert

PSPath Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion :

PSParentPath Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT :

PSChildName CurrentVersion :

PSDrive HKLM :

PSProvider Registry :

30

Reading Multiple Keys
and Values

PS> Get-ItemProperty -Path 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall*' |
Select-Object -Property DisplayName, DisplayVersion, UninstallString

DisplayName

----------- -------------- ---------------

DisplayVersion UninstallString

0.8.2.232

Microsoft IntelliPoint 8.1 8.15.406.0 msiexec.exe /I {3ED4AD...

Microsoft Security Esse... 2.1.1116.0 C:\Program Files\Micro...

NVIDIA Drivers 1.9 C:\Windows\system32\nv...

WinImage "C:\Program Files\WinI...

Microsoft Antimalware 3.0.8402.2 MsiExec.exe /X{05BFB06...

Windows XP Mode 1.3.7600.16422 MsiExec.exe /X{1374CC6...

Windows Home Server-Con... 6.0.3436.0 MsiExec.exe /I{21E4979...

Idera PowerShellPlus Pr... 4.0.2703.2 MsiExec.exe /I{7a71c8a...

Intel(R) PROSet/Wireles... 13.01.1000

(...)

Yet maybe you want to read values not just from one Registry key but rather a whole bunch of them. In HKLM:\Software\Microsoft\
Windows\CurrentVersion\Uninstall, you �nd a lot of keys, one for each installed software product. If you wanted to get a list of all software
installed on your machine, you could read all of these keys and display some values from them.

PS> Get-ItemProperty -Path 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall*' |
Select-Object -Property DisplayName, DisplayVersion, UninstallString | Where-Object
{ $_.DisplayName -ne $null }

31

That again is just a minor adjustment to the previous code because Get-ItemProperty supports wildcards. Have a look:

Voilá, you get a list of installed software. Some of the lines are empty, though. This occurs when a key does not have the value you are
looking for.

To remove empty entries, simply add Where-Object like this:

Creating Registry Keys
Since Registry keys are treated like �les or folders in the �le system, you can create and delete them accordingly. To create new keys, either use
historic aliases like md or mkdir, or use the underlying cmdlet directly:

If a key name includes blank characters, enclose the path in quotation marks. The parent key has to exist.

PS> New-Item HKCU:\Software\NewKey1

Name

---- --------

Property

NewKey1

Name

---- --------

Property

NewKey2

PS> md HKCU:\Software\NewKey2

Hive: Registry::HKEY_CURRENT_USER\Software

Hive: Registry::HKEY_CURRENT_USER\Software

Deleting Registry Keys
To delete a key, use the historic aliases from the �le system that you would use to delete a folder, or use the underlying cmdlet
Remove-Item directly:

PS> Remove-Item HKCU:\Software\Test1

Del HKCU:\Software\Test2

Del HKCU:\Software\Test3

This process needs to be manually con�rmed if the key you are about to remove contains other keys:

Del HKCU:\Software\KeyWithSubKeys

Confirm

PS> New-Item HKCU:\Software\NewKey3 -Value 'Default Value Text' -Type String

Name

---- --------

Property

NewKey3 (default) : Default Value Text

Hive: Registry::HKEY_CURRENT_USER\Software

32

To create a new key with a default value, use New-Item and specify the value and its data type:

Creating Values

Use the –Recurse parameter to delete such keys without manual con�rmation:

Each Registry key can have an unlimited number of values. Earlier in this chapter, you learned how to read these values. Values are called
"ItemProperties", so they belong to an "Item", the Registry key.

To add new values to a Registry key, either use New-ItemProperty or Set-ItemProperty. New-ItemProperty cannot overwrite an existing value
and returns the newly created value in its object form. Set-ItemProperty is more easy going. If the value does not yet exist, it will be created,
else changed. Set-ItemProperty does not return any object.

Here are some lines of code that �rst create a Registry key and then add a number of values with di�erent data types:

Del "HKCU:\Software\First key" -Recurse

The item at "HKCU:\Software\KeyWithSubKeys" has children and the Recurse parameter was not
specified. If you continue, all children will be removed with the item. Are you sure you want
to continue?

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

PS> Get-ItemProperty HKCU:\Software\TestKey4

PS> New-Item HKCU:\Software\TestKey4

PS> Set-ItemProperty HKCU:\Software\TestKey4 -Name Name -Value 'Smith'

PS> Set-ItemProperty HKCU:\Software\TestKey4 -Name ID -Value 12 -Type DWORD

PS> Set-ItemProperty HKCU:\Software\TestKey4 -Name Path -Value '%WINDIR%' -Type ExpandString

PS> Set-ItemProperty HKCU:\Software\TestKey4 -Name Notes -Value 'First Note','Second Note'
-Type MultiString

PS> Set-ItemProperty HKCU:\Software\TestKey4 -Name DigitalInfo -Value 4,8,12,200,90 -Type Binary

Name Smith :

ID 12 :

Path C:\Windows :

Notes {First Note, Second Note} :

DigitalInfo {4, 8, 12, 200...} :

PSPath Registry::HKEY_CURRENT_USER\Software\TestKey4 :

PSParentPath Registry::HKEY_CURRENT_USER\Software :

PSChildName TestKey4 :

PSDrive HKCU :

PSProvider Registry :

33

md HKCU:\Software\Testkey4

Path

---- ----- ------

Owner Access

Microsoft.PowerShell.Core\
Registr...

TobiasWeltne-PC\Tobias Weltner TobiasWeltne-PC\Tobias Weltner
A...

Get-Acl HKCU:\Software\Testkey

PS> [System.Enum]::GetNames([System.Security.AccessControl.RegistryRights])

QueryValues

SetValue

CreateSubKey

Securing Registry Keys

If you wanted to set the keys' default value, use '(default)' as value name.

Use Remove-ItemProperty to remove a value. This line deletes the value Name value that you created in the previous example:

Registry keys (and its values) can be secured with Access Control Lists (ACLs) in pretty much the same way the NTFS �le system manages
access permissions to �les and folders. Likewise, you can use Get-Acl to show current permissions of a key:

To apply new security settings to a key, you need to know the di�erent access rights that can be assigned to a key. Here is how you get a list of
these rights:

Remove-ItemProperty HKCU:\Software\Testkey4 Name

Tip
Clear-ItemProperty clears the content of a value, but not the value itself.

Be sure to delete your test key once you are done playing:

Remove-Item HKCU:\Software\Testkey4 -Recurse

34

Table 16.4: Permitted ItemTypes in the Registry

Description

String A string REG_SZ

ExpandString A string with environment variables that are resolved
when invoked

REG_EXPAND_SZ

Binary Binary values REG_BINARY

DWord Numeric values REG_DWORD

MultiString Text of several lines REG_MULTI_SZ

QWord 64-bit numeric values REG_QWORD

ItemType DataType

EnumerateSubKeys

Notify

CreateLink

Delete

ReadPermissions

WriteKey

ExecuteKey

ReadKey

ChangePermissions

TakeOwnership

FullControl

$acl = Get-Acl HKCU:\Software\Testkey

$acl.Owner

scriptinternals\TobiasWeltner

$me = [System.Security.Principal.NTAccount]"$env:userdomain\$env:username"

$acl.SetOwner($me)

Always make sure that you are the “owner” of the key before modifying Registry key access permissions. Only owners can recover from
lock-out situations, so if you set permissions wrong, you may not be able to undo the changes unless you are the owner of the key.

This is how to take ownership of a Registry key (provided your current access permissions allow you to take ownership. You may want to run
these examples in a PowerShell console with full privileges):

Taking Ownership

$acl = Get-Acl HKCU:\Software\Testkey

$person = [System.Security.Principal.NTAccount]"Everyone"

$access = [System.Security.AccessControl.RegistryRights]"WriteKey"

$inheritance = [System.Security.AccessControl.InheritanceFlags]"None"

$propagation = [System.Security.AccessControl.PropagationFlags]"None"

$type = [System.Security.AccessControl.AccessControlType]"Deny"

$rule = New-Object

System.Security.AccessControl.RegistryAccessRule($person,$access,$inheritance,$propagation,
$type)

$acl.AddAccessRule($rule)

Set-Acl HKCU:\Software\Testkey $acl

The next step is to assign new permissions to the key. Let's exclude the group “Everyone” from making changes to this key:

Setting New Access Permissions

35

md HKCU:\Software\Testkey\subkey

New-Item : Requested Registry access is not allowed.

At line:1 char:34

+ param([string[]]$paths); New-Item <<<< -type directory -path $paths

The modi�cations immediately take e�ect.Try creating new subkeys in the Registry editor or from within PowerShell, and you’ll get an
error message:

$acl = Get-Acl HKCU:\Software\Testkey

$person = [System.Security.Principal.NTAccount]"Everyone"

$access = [System.Security.AccessControl.RegistryRights]"WriteKey"

$inheritance = [System.Security.AccessControl.InheritanceFlags]"None"

$propagation = [System.Security.AccessControl.PropagationFlags]"None"

$type = [System.Security.AccessControl.AccessControlType]"Deny"

$rule = New-Object

System.Security.AccessControl.RegistryAccessRule($person,$access,$inheritance,$propagation,
$type)

$acl.RemoveAccessRule($rule)

Set-Acl HKCU:\Software\Testkey $acl -Force

The new rule for Everyone was a complete waste of time after all because it applied to everyone, e�ectively excluding everyone from the key.
So, how do you go about removing a rule? You can use RemoveAccessRule() to remove a particular rule, and RemoveAccessRuleAll() to
remove all rules of the same type (permission or restriction) for the user named in the speci�ed rule. ModifyAccessRule() changes an existing
rule, and PurgeAccessRules() removes all rules for a certain user.

To remove the rule that was just inserted, proceed as follows:

However, removing your access rule may not be as straightforward because you have e�ectively locked yourself out. Since you no longer
have modi�cation rights to the key, you are no longer allowed to modify the keys' security settings as well.

You can overrule this only if you take ownership of the key: Open the Registry editor, navigate to the key, and by right-clicking and then
selecting Permissions open the security dialog box and manually remove the entry for Everyone.

Removing an Access Rule

Tip
Why does the restriction applies to you as an administrator? Aren't you supposed to have full access? No, restrictions always have priority
over permissions, and because everyone is a member of the Everyone group, the restriction applies to you as well. This illustrates that you
should be extremely careful applying restrictions. A better approach is to assign permissions only.

Important
You’ve just seen how relatively easy it is to lock yourself out. Be careful with restriction rules.

36

SKC Name Property

0 0 Subkey {}

VC

0

--- --------------

md hkcu:\software\Testkey2\Subkey

Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\Testkey2

Set-ItemProperty HKCU:\Software\Testkey2 Value1 "Here is text"

Note that in this case the new rules were not entered by using AddAccessRule() but by ResetAccessRule(). This results in removal of all
existing permissions for respective users. Still, the result isn’t right because regular users could still create subkeys and write values:

md HKCU:\Software\Testkey2

$acl = Get-Acl HKCU:\Software\Testkey2

Admins may do everything:

$person = [System.Security.Principal.NTAccount]”Administrators”

$access = [System.Security.AccessControl.RegistryRights]"FullControl"

$inheritance = [System.Security.AccessControl.InheritanceFlags]"None"

$propagation = [System.Security.AccessControl.PropagationFlags]"None"

$type = [System.Security.AccessControl.AccessControlType]"Allow"

$rule = New-Object

Everyone may only read and create subkeys:

$person = [System.Security.Principal.NTAccount]"Everyone"

$access = [System.Security.AccessControl.RegistryRights]"ReadKey"

$inheritance = [System.Security.AccessControl.InheritanceFlags]"None"

$propagation = [System.Security.AccessControl.PropagationFlags]"None"

$type = [System.Security.AccessControl.AccessControlType]"Allow"

$rule = New-Object

System.Security.AccessControl.RegistryAccessRule($person,$access,$inheritance,$propagation,
$type)

$acl.ResetAccessRule($rule)

Set-Acl HKCU:\Software\Testkey2 $acl

System.Security.AccessControl.RegistryAccessRule($person,$access,$inheritance,$propagation,
$type)

$acl.ResetAccessRule($rule)

In the next example, you use permission rules rather than restriction rules. The task: create a key where only administrators can make
changes. Everyone else should just be allowed to read the key.

Controlling Access to Sub-Keys

37

del HKCU:\Software\Testkey2

md HKCU:\Software\Testkey2

$acl = Get-Acl HKCU:\Software\Testkey2

$acl = Get-Acl HKCU:\Software\Testkey2

$acl.SetAccessRuleProtection($true, $false)

Set-Acl HKCU:\Software\Testkey2 $acl

The key includes more permissions than what you assigned to it. It gets these additional permissions by inheritance from parent keys. If you
want to turn o� inheritance, use SetAccessRuleProtection():

Inheritance is a sword that cuts both ways. You have just turned o� the inheritance of permissions from parent keys, but will your own newly
set permissions be propagated to subkeys? Not by default. If you want to pass on your permissions to subdirectories, change the setting for
propagation, too. Here are all steps required to secure the key:

(Get-Acl HKCU:\Software\Testkey2).Access | Format-Table -Wrap

RegistryRights

ReadKey Allow Everyone False None None

FullControl Allow BUILT-IN\
Administrators

False None None

FullControl Allow TobiasWeltne-PC\
Tobias Weltner

True ContainerInherit,
ObjectInherit

None

FullControl Allow NT AUTHORITY\
SYSTEM

True ContainerInherit,
ObjectInherit

None

FullControl Allow BUILT-IN\
Administrators

True ContainerInherit,
ObjectInherit

None

ReadKey Allow NT AUTHORITY\
RESTRICTED ACCESS

True ContainerInherit,
ObjectInherit

None

-------------- ------------- ----------------- ----------- ---------------- -----------

AccessControl
Type

IdentityReference IsInherited InheritanceFlags Propagation
Flags

Look at the current permissions of the key to �gure out why your permissions did not work the way you planned:

(Get-Acl HKCU:\Software\Testkey2).Access | Format-Table -Wrap

RegistryRights

ReadKey Allow Everyone False None None

FullControl Allow BUILT-IN\
Administrators

False None None

-------------- ------------- ----------------- ----------- ---------------- -----------

AccessControl
Type

IdentityReference IsInherited InheritanceFlags Propagation
Flags

Now, when you look at the permissions again, the key now contains only the permissions you explicitly set. It no longer inherits any
permissions from parent keys:

Revealing Inheritance

Controlling Your Own Inheritance

38

Admins may do anything:

$person = [System.Security.Principal.NTAccount]”Administrators”

$access = [System.Security.AccessControl.RegistryRights]"FullControl"

$inheritance = [System.Security.AccessControl.InheritanceFlags]"ObjectInherit,ContainerInherit"

$propagation = [System.Security.AccessControl.PropagationFlags]"None"

$type = [System.Security.AccessControl.AccessControlType]"Allow"

$rule = New-Object

System.Security.AccessControl.RegistryAccessRule($person,$access,$inheritance,$propagation,
$type)

$acl.ResetAccessRule($rule)

$person = [System.Security.Principal.NTAccount]"Everyone"

$access = [System.Security.AccessControl.RegistryRights]"ReadKey"

$inheritance = [System.Security.AccessControl.InheritanceFlags]"ObjectInherit,ContainerInherit"

$propagation = [System.Security.AccessControl.PropagationFlags]"None"

$type = [System.Security.AccessControl.AccessControlType]"Allow"

$rule = New-Object

System.Security.AccessControl.RegistryAccessRule($person,$access,$inheritance,$propagation,
$type)

$acl.ResetAccessRule($rule)

Set-Acl HKCU:\Software\Testkey2 $acl

Everyone may only read and create subkeys:

39

40

In your daily work as an administrator, you will
probably often deal with applications (processes),
services, and event logs so let's take some of the
knowledge you gained from the previous chapters and
play with it. The examples and topics covered in this
chapter are meant to give you an idea of what you can
do. By no means are they a complete list of what you
can do. They will provide you with a great starting
point, though.

Processes, Services, and
Event Logs

Topics Covered:
Working with Processes·

Managing Services

Reading and Writing Event Logs

·

·

Chapter 17.

PS> Get-Process | Select-Object Name, Description, Company, MainWindowTitle

Name

---- ----------- ------- ---------------

Description Company MainWindowTitle

AppleMobileDevic...

conhost Console Window Host Microsoft Corpor...

csrss

csrss

DataCardMonitor DataCardMonitor... Huawei Technolog... DataCardMonitor

Dropbox Dropbox Dropbox, Inc.

dwm Desktop Window M... Microsoft Corpor...

(...)

Every application that is running is represented by a so-called "process". To view all running processes, use Get-Process cmdlet.

PS> Get-Process

This will list all running processes on the local machine, not just yours. So if other people are logged onto your box, their processes may also
show up in that list. However, unless you have local Administrator privileges, you can only access limited properties of processes you did not
launch yourself.

That's why Get-Process throws a number of exceptions when you try and list the executable �les of all running processes. Exceptions occur
either when there is no executable for a given process (namely System and Idle), or if you do not have permission to see them:

PS> Get-Process -FileVersionInfo

Process objects returned from Get-Process contain a lot more information that you can see when you pipe the result to Select-Object and
have it display all object properties:

You can then examine the object properties available, and put together your own reports by picking the properties that you need:

PS> Get-Process | Select-Object *

To hide error messages and focus only on the information you are able to retrieve, use the common parameter -ErrorAction SilentlyContinue
which is available in every cmdlet - or its short form -ea 0:

PS> Get-Process -FileVersionInfo -ErrorAction SilentlyContinue

PS> Get-Process -FileVersionInfo -ea 0

Working with Processes

41

When you do that, you'll notice that there may be blank lines. They occur when a process object has no information for the particular property
you selected. For example, the property MainWindowTitle represents the text in the title bar of an application window. So, if a process has no
application window, MainWindowTitle is empty.

You can use the standard pipeline cmdlets to take care of that. Use Where-Object to �lter out processes that do not meet your requirements.
For example, this line will get you only processes that do have an application window:

PS> Get-Process | Where-Object { $_.MainWindowTitle -ne '' } | Select-Object Description,
MainWindowTitle, Name, Company

Description

----------- --------------- ---- -------

MainWindowTitle Name Company

DataCardMonitor... DataCardMonitor DataCardMonitor Huawei Technolog...

Remote Desktop C... storage1 - Remot... mstsc Microsoft Corpor...

Windows PowerShell Windows PowerShell powershell Microsoft Corpor...

Microsoft Office... eBook_Chap17_V2.... WINWORD Microsoft Corpor...

Each Process object contains methods and properties. Many properties may be read as well as modi�ed, and methods can be executed like
commands. This allows you to control many �ne settings of processes. For example, you can speci�cally raise or lower the priority of a process.
The next statement lowers the priority of all Notepads:

Accessing Process Objects

PS> Get-Process notepad | ForEach-Object { $_.PriorityClass = "BelowNormal" }

Launching applications from PowerShell is pretty straight-forward: simply enter the name of the program you want to run, and press ENTER:

Launching New Processes (Applications)

PS> notepad

PS> regedit

PS> ipconfig

Here are some more examples of using pipeline cmdlets to re�ne the results returned by Get-Process. Can you decipher what these lines
would do?

PS> Get-Process | Where-Object { $_.StartTime -gt (Get-Date).AddMinutes(-180)}

PS> @(Get-Process notepad -ea 0).Count

PS> Get-Process | Measure-Object -Average -Maximum -Minimum -Property PagedSystemMemorySize

Tip
Note that you can also retrieve information about processes by using WMI:

WMI will get you even more details about running processes.

Note that even with Get-Process, you can authenticate. Establish an IPC network connection to the target machine, and use this
connection for authentication. Here is an example:

Both Get-Process and Get-WmiObject support the parameter -ComputerName, so you can use both to retrieve processes remotely from
other machines. However, only Get-WmiObject also supports the parameter -Credential so you can authenticate. Get-Process always uses
your current identity, and unless you are Domain Administrator or otherwise have local Administrator privileges at the target machine, you
will get an Access Denied error.

PS> Get-WmiObject Win32_Process

PS> net use \\someRemoteMachine Password /USER:domain\username

42

This works great, but eventually you'll run into situations where you cannot seem to launch an application. PowerShell might complain that it
would not recognize the application name although you know for sure that it exists.

When this happens, you need to specify the absolute or relative path name to the application �le. That can become tricky because in order to
escape spaces in path names, you have to quote them, and in order to run quoted text (and not echo it back), you need to prepend it with an
ampersand. The ampersand tells PowerShell to treat the text as if it was a command you entered.

So if you wanted to run Internet Explorer from its standard location, this is the line that would do the job:

When you run applications from within PowerShell, these are the rules to know:

You'll notice that PowerShell now waits for the Notepad to close again before it accepts new commands.

Whenever you need to launch a new process and want more control, use Start-Process. This cmdlet has a number of bene�ts over launching
applications directly. First of all, it is a bit smarter and knows where a lot of applications are stored. It can for example �nd iexplore.exe without
the need for a path:

Using Start-Process

PS> Start-Process iexplore.exe

Second, Start-Process supports a number of parameters that allow you to control window size, synchronous or asynchronous execution or
even the user context an application is using to run. For example, if you wanted PowerShell to wait for a window-based application so a script
could execute applications in a strict order, use -Wait parameter:

PS> Start-Process notepad -Wait

& 'C:\Program Files\Internet Explorer\iexplore.exe'

Important
Start-Process has just one limitation: it cannot return the results of console-based applications back to you. Check this out:

This will store the result of ipconfig in a variable. The same done with Start-Process yields nothing:

Instead, they are always output to the console. So if you want to read information from console-based applications, do not use
Start-Process.

That's because Start-Process by default runs every command synchronously, so ipconfig runs in its own new console window which is
visible for a split-second if you look carefully. But even if you ask Start-Process to run the command in no new console, results are never
returned:

PS> $result = ipconfig

PS> $result = Start-Process ipconfig

PS> $result = Start-Process ipconfig -NoNewWindow

43

Environment variable $env:path: All folders listed in $env:path are special. Applications stored inside these folders can be launched
by name only. You do not need to specify the complete or relative path. That's the reason why you can simply enter notepad and press
ENTER to launch the Win dows Editor, or run commands like ping or ipconfig.

Escaping Spaces: If the path name contains spaces, the entire path name needs to be quoted. Once you quote a path, though, it
becomes a string (text), so when you press ENTER, PowerShell happily echoes the text back to you but won't start the application.
Whenever you quote paths, you need to prepend the string with "&" so PowerShell knows that you want to launch something.

Synchronous and asynchronous execution: when you run a console-based application such as ipconfig.exe or netstat.exe, it shares
the console with PowerShell so its output is displayed in the PowerShell console. That's why PowerShell pauses until console-based
applications �nished. Window-based applications such as notepad.exe or regedit.exe use their own windows for output. Here, PowerShell
continues immediately and won't wait for the application to complete.

If you must kill a process immediately, use Stop-Process and specify either the process ID, or use the parameter -Name to specify the process
name. This would close all instances of the Notepad:

Stopping processes this way shouldn’t be done on a regular basis: since the application is immediately terminated, it has no time to save
unsaved results (which might result in data loss), and it cannot properly clean up (which might result in orphaned temporary �les and
inaccurate open DLL counters). Use it only if a process won't respond otherwise. Use –WhatIf to simulate. Use –Confirm when you want to have
each step con�rmed.

To close a process nicely, you can close its main window (which is the automation way of closing the application window by a mouse click).
Here is a sample that closes all instances of notepad:

Services are basically processes, too. They are just executed automatically and in the background and do not necessarily require a user logon.
Services provide functionality usually not linked to any individual user.

Table 17.1: Cmdlets for managing services

Stopping Processes

PS> Stop-Process -Name Notepad

Use Get-Service to list all services and check their basic status.

Examining Services

PS> Get-Service

You can also check an individual service and �nd out whether it is running or not:

PS> Get-Service Spooler

PS> Get-Process Notepad -ea 0 | ForEach-Object { $_.CloseMainWindow() }

Managing Services

44

Description

Get-Service Lists services

New-Service Registers a service

Restart-Service Stops a service and then restarts it. For example, to allow modifications
of settings to take effect

Resume-Service Resumes a stopped service

Set-Service Modifies settings of a service

Start-Service Starts a service

Stop-Service Stops a service

Suspend-Service Suspends a service

Cmdlet

PS> Get-WmiObject Win32_Service -Filter 'StartMode="Auto" and Started=False' | Select-Object
DisplayName, ExitCode

DisplayName

----------- --------

ExitCode

Microsoft .NET Framework NGEN v4.0.30319_X86 0

Microsoft .NET Framework NGEN v4.0.30319_X64 0

Google Update Service (gupdate) 0

Net Driver HPZ12 0

Pml Driver HPZ12 0

Software Protection 0

Windows Image Acquisition (WIA) 0

To start, stop, temporarily suspend, or restart a service, use the corresponding cmdlets. You can also use Get-Service to select the services �rst,
and then pipe them to one of the other cmdlets. Just note that you may need local administrator privileges to change service properties.

Starting, Stopping, Suspending, and Resuming
Services

PS> Stop-Service Spooler

Since WMI includes more information that Get-Service, you could �lter for all services set to start automatically that are not running. By
examining the service ExitCode property, you'd �nd services that did initialization tasks and �nished ok (exit code is 0) or that crashed (exit
code other than 0):

If a service has dependent services, it cannot be stopped unless you also specify -Force.

PS> Stop-Service Spooler -Force

Note that you can use WMI to �nd out more information about services, and also manage services on remote machines:

PS> Get-WmiObject Win32_Service -ComputerName Storage1 -Credential Administrator

Reading and Writing
Event Logs
Event logs are the central place where applications as well as the operating system log all kinds of information grouped into the categories
Information, Warning, and Error. PowerShell can read and write these log �les. To �nd out which log �les exist on your machine, use
Get-EventLog with the parameter -List:

PS> Get-EventLog -List

45

To write your own entries to one of the event logs, you �rst need to register an event source (which acts like your "sender" address). To register
an event source, you need local administrator privileges. Make sure you open PowerShell with full administrator rights and use this line to add
a new event source called "PowerShellScript" to the Application log:

Writing Entries to the Event Log

PS> New-EventLog -LogName Application -Source PowerShellScript

Or you can open the system dialog to view your new event entry that way:

PS> Show-EventLog

And of course you can remove your event source if this was just a test and you want to get rid of it again (but you do need administrator
privileges again, just like when you created the event source):

PS> Remove-EventLog -Source PowerShellScript

Note that an event source must be unique and may not exist already in any other event log. To remove an event source, use Remove-EventLog
with the same parameters as above, but be extremely careful. This cmdlet can wipe out entire event logs.

Once you have registered your event source, you are ready to log things to an event log. Logging (writing) event entries no longer necessarily
requires administrative privileges. Since we added the event source to the Application log, anyone can now use it to log events. You could for
example use this line inside of your logon scripts to log status information:

You can now use Get-EventLog to read back your entries:

PS> Write-EventLog -LogName Application -Source PowerShellScript -EntryType Information
-EventId 123 -Message 'This is my first own event log entry'

To list the content of one of the listed event logs, use -LogName instead. This lists all events from the System event log:

PS> Get-EventLog -LogName System

And this line gets you all error and warning entries that have the keyword "Time" in its message:

PS> Get-EventLog -LogName System -EntryType Error, Warning -Message *Time* | Select-Object
TimeWritten, Message

Dumping all events is not a good idea, though, because this is just too much information. In order to �lter the information and focus on what
you want to know, take a look at the column headers. If you want to �lter by the content of a speci�c column, look for a parameter that
matches the column name.
This line gets you the latest 20 errors from the System event log:

PS> Get-EventLog -LogName System -EntryType Error -Newest 20

PS> Get-EventLog -LogName Application -Source PowerShellScript

Index

163833 Nov 14 10:47 Information PowerShellScript 123 This is...
----- ---- --------- ------ ---------- -------

Time EntryType Source InstanceID Message

46

47

Windows Management Instrumentation (WMI) is a
technique available on all Windows systems starting
with Windows 2000. WMI can provide you with a
wealth of information about the Windows
configuration and setup. It works both locally and
remotely, and PowerShell makes accessing
WMI a snap.

WMI: Windows Management
Instrumentation

Topics Covered:

WMI Quick Start·

Retrieving Information

Changing System Configuration

·

·
WMI Events·

Using WMI Remotely

WMI Background Information

·

·

Chapter 18.

WMI Quick Start

Retrieving Information

PS> Get-WmiObject -List Win32_*Print*

NameSpace: ROOT\cimv2

Name

---- ------- ----------

Methods Properties

Win32_PrinterConfiguration {} {BitsPerPel, Captio...

Win32_PrinterSetting {} {Element, Setting}

Win32_PrintJob {Pause, Resume} {Caption, Color, Da...

Win32_Printer {Attributes, Availa...{SetPowerState, R...

Win32_PrinterDriver {StartService, St... {Caption, ConfigFil...

Win32_TCPIPPrinterPort {} {ByteCount, Caption...

Win32_PrinterShare {} {Antecedent, Depend...

Win32_PrinterDriverDll {Antecedent, Depend...{}

Win32_PrinterController {AccessState, Antec...{}

To work with WMI you need to know just a little bit of theory. Let's check out what the terms "class" and "object" stand for.

A "class" pretty much is like the "kind of an animal". There are dogs, cats, horses, and each kind is a class. So there is always only one class
of a kind.

How do you ask WMI for objects? It's easy! Just use the cmdlet Get-WmiObject. It accepts a class name and returns objects, just like the
cmdlet name and its parameter suggest:

An "object" works like an "animal", so there are zillions of real dogs, cats, and horses. So, there may be one, ten, thousands, or no objects
(or "instances") of a class. Let's take the class "mammoth". There are no instances of this class these days.

WMI works the same. If you'd like to know something about a computer, you ask WMI about a class, and WMI returns the objects. When you
ask for the class "Win32_BIOS", you get back exactly one instance (or object) because your computer has just one BIOS. When you ask for
"Win32_Share", you get back a number of instances, one for each share. And when you ask for "Win32_TapeDrive", you get back nothing
because most likely, your computer has no built-in tape drive. Tape drives thus work like mammoths in the real world. While there is a class
("kind"), there is no more instance.

Get-WmiObject -Class Win32_BIOS

SMBIOSBIOSVersion RKYWSF21 :

Manufacturer Phoenix Technologies LTD :

Name Phoenix TrustedCore(tm) NB Release SP1 1.0 :

SerialNumber 701KIXB007922 :

Version PTLTD - 6040000 :

As you can see, working with WMI does not require much knowledge. It does require though that you know the name of a WMI class that
represents what you are after. Fortunately, Get-WmiObject can also work like a dictionary and look up WMI class names for you. This will get
you all WMI class names that have the keyword "print" in them:

Exploring WMI Classes

48

PS> Get-WmiObject -Class Win32_BIOS

SMBIOSBIOSVersion 02LV.MP00.20081121.hkk :

Manufacturer Phoenix Technologies Ltd. :

Name Phoenix SecureCore(tm) NB Version 02LV.MP00.20081121.hkk :

SerialNumber ZAMA93HS600210 :

Version SECCSD - 6040000 :

By default, PowerShell limits the information WMI returns to you so you don't get carried away. It's pretty much like in the movie "The Matrix":
you need to decide whether you want to swallow the blue pill and live in a simple world, or whether you dare to swallow the red pill and see
the real world. By default, you live in the blue-pill-world with only limited information.

PS> Get-WmiObject -Class Win32_BIOS | Select-Object -Property *

Status OK :

Name Phoenix SecureCore(tm) NB Version 02LV.MP00.20081121.hkk :

Caption Phoenix SecureCore(tm) NB Version 02LV.MP00.20081121.hkk :

SMBIOSPresent True :

__GENUS 2 :

__CLASS Win32_BIOS :

__SUPERCLASS CIM_BIOSElement :

__DYNASTY CIM_ManagedSystemElement :

__RELPATH Win32_BIOS.Name="Phoenix SecureCore(tm) NB Version
02LV.MP00.20081121.hkk",SoftwareElementID="Phoenix
SecureCore(tm) NB Version 02LV.MP00.20081121.hkk",
SoftwareElementState=3,TargetOperatingSystem=0,
Version="SECCSD - 6040000"

 :

__PROPERTY_COUNT 27 :

__SERVER DEMO5 :

__DERIVATION {CIM_BIOSElement, CIM_SoftwareElement,
CIM_LogicalElement, CIM_ManagedSystemElement}

 :

BiosCharacteristics {4, 7, 8, 9...} :

BIOSVersion {SECCSD - 6040000, Phoenix SecureCore(tm) NB Version
02LV.MP00.20081121.hkk, Ver 1.00PARTTBL}

Phoenix SecureCore(tm) NB Version
02LV.MP00.20081121.hkk

 :

__PATH \\DEMO5\root\cimv2:Win32_BIOS.Name="Phoenix
SecureCore(tm) NB Version
02LV.MP00.20081121.hkk",SoftwareElementID="Phoenix
SecureCore(tm) NB Version 02LV.MP00.20081121.hkk",
SoftwareElementState=3,TargetOperatingSystem=0,
Version="SECCSD - 6040000"

 :

__NAMESPACE root\cimv2 :

BuildNumber :

CodeSet :

CurrentLanguage :

Description :

To see the red-pill-world, pipe the results to Select-Object and ask it to show all available properties:

Swallowing The Red Pill

49

PS> Get-WmiObject Win32_BIOS | Select-Object __Server, Manufacturer, SerialNumber, Version

__SERVER

-------- ------------ ------------ -------

Manufacturer SerialNumber Version

DEMO5 Phoenix Technolo... ZAMA93HS600210 SECCSD - 6040000

Once you see the real world, you can pick the properties you �nd interesting and then put together a custom selection. Note that
PowerShell adds a couple of properties to the object which all start with "__". These properties are available on all WMI objects. __Server is
especially useful because it always reports the name of the computer system the WMI object came from. Once you start retrieving WMI
information remotely, you should always add __Server to the list of selected properties.

IdentificationCode :

InstallableLanguages :

InstallDate :

ListOfLanguages

 :LanguageEdition

 :

Manufacturer Phoenix Technologies Ltd. :

OtherTargetOS :

PrimaryBIOS True :

ReleaseDate 20081121000000.000000+000 :

SerialNumber ZAMA93HS600210 :

SMBIOSBIOSVersion 02LV.MP00.20081121.hkk :

SMBIOSMajorVersion

SMBIOSMinorVersion

2 :

5 :

SoftwareElementID Phoenix SecureCore(tm) NB Version 02LV.MP00.20081121.hkk :

SoftwareElementState 3 :

Version SECCSD - 6040000 :

Options System.Management.ObjectGetOptions :

ClassPath \\DEMO5\root\cimv2:Win32_BIOS

{BiosCharacteristics, BIOSVersion, BuildNumber, Caption...}

 :

Path \\DEMO5\root\cimv2:Win32_BIOS.Name="Phoenix
SecureCore(tm) NB Version
02LV.MP00.20081121.hkk",SoftwareElementID="Phoenix
SecureCore(tm) NB Version 02LV.MP00.20081121.hkk",
SoftwareElementState=3,TargetOperatingSystem=0,
Version="SECCSD - 6040000"

 :

Scope System.Management.ManagementScope :

Properties :

SystemProperties {__GENUS, __CLASS, __SUPERCLASS, __DYNASTY...} :

Qualifiers {dynamic, Locale, provider, UUID} :

Site :

Container :

TargetOperatingSystem 0 :

Often, there are more instances of a class than you need. For example, when you query for Win32_NetworkAdapter, you get all kinds of
network adapters, including virtual adapters and miniports.

Filtering WMI Results

50

PS> Get-WmiObject Win32_NetworkAdapterConfiguration -Filter 'IPAddress != NULL' | Select-Object
Caption, IPAddress, MACAddress

Get-WmiObject : Invalid query "select * from Win32_NetworkAdapterConfiguration where IPAddress
!= NULL"

If you translated this to a server-side WMI �lter, it fails:

PS> Get-WmiObject Win32_NetworkAdapter | Where-Object { $_.MACAddress -ne $null } |
Select-Object Name, MACAddress, AdapterType

Name

---- ---------- -----------

MACAddress AdapterType

Intel(R) 82567LM-Gigabi... 00:13:77:B9:F2:64 Ethernet 802.3

RAS Async Adapter 20:41:53:59:4E:FF Wide Area Network (WAN)

Intel(R) WiFi Link 5100... 00:22:FA:D9:E1:50 Ethernet 802.3

PS> Get-WmiObject Win32_NetworkAdapter -Filter 'MACAddress != NULL' | Select-Object Name,
MACAddress, AdapterType

Name

---- ---------- -----------

MACAddress AdapterType

Intel(R) 82567LM-Gigabi... 00:13:77:B9:F2:64 Ethernet 802.3

RAS Async Adapter 20:41:53:59:4E:FF Wide Area Network (WAN)

Intel(R) WiFi Link 5100... 00:22:FA:D9:E1:50 Ethernet 802.3

PowerShell can �lter WMI results client-side using Where-Object. So, to get only objects that have a MACAddress, you could use this line:

Client-side �ltering is easy because it really just uses Where-Object to pick out those objects that ful�ll a given condition. However, it is
slightly ine�cient as well. All WMI objects need to travel to your computer �rst before PowerShell can pick out the ones you want.

If you only expect a small number of objects and/or if you are retrieving objects from a local machine, there is no need to create more e�cient
code. If however you are using WMI remotely via network and/or have to deal with hundreds or even thousands of objects, you should instead
use server-side �lters.

These �lters are transmitted to WMI along with your query, and WMI only returns the wanted objects in the �rst place. Since these �lters are
managed by WMI and not PowerShell, they use WMI syntax and not PowerShell syntax. Have a look:

PS> Get-WmiObject Win32_NetworkAdapterConfiguration | Where-Object { $_.IPAddress -ne $null }
| Select-Object Caption, IPAddress, MACAddress

Caption

---- ---------- -----------

IPAddress MACAddress

[00000011] Intel(R) WiF... {192.168.2.109, fe80::a... 00:22:FA:D9:E1:50

Simple �lters like the one above are almost self-explanatory. WMI uses di�erent operators ("!=" instead of "-ne" for inequality) and keywords
("NULL" instead of $null), but the general logic is the same.

Sometimes, however, WMI �lters can be tricky. For example, to �nd all network cards that have an IP address assigned to them, in
PowerShell (using client-side �ltering) you would use:

51

Get-WmiObject Win32_Service | ForEach-Object { $_.__PATH }

\\JSMITH-PC\root\cimv2:Win32_Service.Name="AeLookupSvc"

PS> Get-WmiObject Win32_Service -Filter 'Name LIKE "%net%"' | Select-Object Name, DisplayName,
State

Name

---- ----------- -----

DisplayName State

aspnet_state ASP.NET-Zustandsdienst Stopped

Net Driver HPZ12 Net Driver HPZ12 Stopped

Netlogon Netlogon Running

Netman Network Connections Running

NetMsmqActivator Net.Msmq Listener Adapter Stopped

NetPipeActivator Net.Pipe Listener Adapter Stopped

netprofm Network List Service Running

NetTcpActivator Net.Tcp Listener Adapter Stopped

NetTcpPortSharing Net.Tcp Port Sharing Se... Stopped

WMPNetworkSvc Windows Media Player Ne... Running

A special WMI �lter operator is "LIKE". It works almost like PowerShell’s comparison operator -like. Use "%" instead of "*" for wildcards, though.
So, to �nd all services with the keyword "net" in their name, try this:

PS> Get-WmiObject Win32_NetworkAdapterConfiguration -Filter 'IPEnabled = true' | Select-Object
Caption, IPAddress, MACAddress

Caption

------- --------- ----------

IPAddress MACAddress

[00000011] Intel(R) WiF... {192.168.2.109, fe80::a... 00:22:FA:D9:E1:50

The reason for this is the nature of the IPAddress property. When you look at the results from your client-side �ltering, you'll notice that the
column IPAddress has values in braces and displays more than one IP address. The property IPAddress is an array. WMI �lters cannot check
array contents.

So in this scenario, you would have to either stick to client-side �ltering or search for another object property that is not an array and could still
separate network cards with IP address from those without. There happens to be a property called IPEnabled that does just that:

Every WMI instance has its own unique path. This path is important if you want to access a particular instance directly. The path of a WMI
object is located in the __PATH property. First use a "traditional" query to list this property and �nd out what it looks like:

Direct WMI Object Access

Note
PowerShell supports the [WmiSearcher] type accelerator, which you can use to achieve basically the same thing you just did with
the –query parameter:

$searcher = [WmiSearcher]"select caption,commandline from Win32_Process where name like 'p%'"

$searcher.Get()| Format-Table [a-z]* -Wrap

52

\\JSMITH-PC\root\cimv2:Win32_Service.Name="AgereModemAudio"

\\JSMITH-PC\root\cimv2:Win32_Service.Name="ALG"

\\JSMITH-PC\root\cimv2:Win32_Service.Name="Appinfo"

\\JSMITH-PC\root\cimv2:Win32_Service.Name="AppMgmt"

\\JSMITH-PC\root\cimv2:Win32_Service.Name="Ati External Event Utility"

\\JSMITH-PC\root\cimv2:Win32_Service.Name="AudioEndpointBuilder"

\\JSMITH-PC\root\cimv2:Win32_Service.Name="Audiosrv"

\\JSMITH-PC\root\cimv2:Win32_Service.Name="Automatic LiveUpdate - Scheduler"

\\JSMITH-PC\root\cimv2:Win32_Service.Name="BFE"

\\JSMITH-PC\root\cimv2:Win32_Service.Name="BITS"

\\JSMITH-PC\root\cimv2:Win32_Service.Name="Browser"

(...)

[wmi]"Win32_Service.Name='Fax'"

ExitCode 1077 :

Name Fax :

ProcessId 0 :

StartMode Manual :

State Stopped :

Status OK :

The path consists basically of the class name as well as one or more key properties. For services, the key property is Name and is the
English-language name of the service. If you want to work directly with a particular service through WMI, specify its path and do a type
conversion. Use either the [wmi] type accelerator or the underlying [System.Management.ManagementObject] .NET type:

$disk = [wmi]'Win32_LogicalDisk="C:"'

$disk.FreeSpace

Status :

Availability :

DeviceID C: :

StatusInfo :

Access 0 :

BlockSize :

Caption C: :

Compressed False :

ConfigManagerErrorCode :

ConfigManagerUserConfig :

CreationClassName :

10181373952

[int]($disk.FreeSpace / 1MB)

9710

$disk | Format-List [a-z]*

 Win32_LogicalDisk

In fact, you don’t necessarily need to specify the name of the key property as long as you at least specify its value. This way, you’ll �nd all the
properties of a speci�c WMI instance right away.

53

WMIs primary purpose is to read information about the current system con�guration but it can also be used to make changes to a system.
Most WMI object properties are read-only, but some are writeable, too. In addition, a number of WMI objects contain methods that you can
call to make changes.

Note that WMI objects returned by PowerShell Remoting always are read-only. They cannot be used to change the remote system. If you want
to change a remote system using WMI objects, you must connect to the remote system using the -ComputerName parameter provided by
Get-WmiObject.

Changing System
Configuration

Description :

DriveType :

ErrorCleared :

ErrorDescription :

ErrorMethodology

NTFS

 :

FileSystem :

FreeSpace 10181373952 :

InstallDate :

LastErrorCode :

MaximumComponentLength :

MediaType : 12

255

Name :

NumberOfBlocks

C:

 :

PNPDeviceID :

PowerManagementCapabilities :

PowerManagementSupported :

ProviderName :

Purpose :

QuotasDisabled :

QuotasIncomplete :

QuotasRebuilding :

Size :

SupportsDiskQuotas :

SupportsFileBasedCompression :

SystemCreationClassName :

SystemName :

VolumeDirty :

VolumeName :

VolumeSerialNumber : AC039C05

Local hard drive

3

100944637952

False

True

Win32_ComputerSystem

JSMITH-PC

54

Most of the properties that you �nd in WMI objects are read-only. There are few, though, that can be modi�ed. For example, if you want to
change the description of a drive, add new text to the VolumeName property of the drive:

Modifying Properties

WMI objects derived from the Win32_Process class have a Terminate() method you can use to terminate a process. Of course it is much easier
to terminate a process with Stop-Process, so why would you use WMI? Because WMI supports remote connections. Stop-Process can only stop
processes on your local machine.

Add the parameter -ComputerName to Get-WmiObject, and you'd be able to kill notepads on one or more remote machines - provided you
have Administrator privileges on the remote machine.

For every instance that Terminate() closes, it returns an object with a number of properties. Only the property ReturnValue is useful, though,
because it tells you whether the call succeeded. That's why it is generally a good idea to add ".ReturnValue" to all calls of a WMI method. A
return value of 0 generally indicates success, any other code failure. To �nd out what the error codes mean you would have to surf to an
Internet search engine and enter the WMI class name (like "Win32_Process"). One of the �rst links will guide you to the Microsoft MSDN
documentation page for that class. It lists all codes and clear text translations for all properties and method calls.

This line would kill all instances of the Windows Editor "notepad.exe" on your local machine:

Invoking WMI Methods

Get-WmiObject Win32_Process -Filter "name='notepad.exe'" | ForEach-Object { $_.Terminate()
.ReturnValue }

$drive = [wmi]"Win32_LogicalDisk='C:'"

$drive.VolumeName = "My Harddrive"

Path \\.\root\cimv2:Win32_LogicalDisk.DeviceID="C:" :

RelativePath Win32_LogicalDisk.DeviceID="C:" :

Server . :

IsClass False :

IsInstance True :

IsSingleton False :

NamespacePath root\cimv2 :

ClassName Win32_LogicalDisk :

$drive.Put()

Tip
If you already know the process ID of a process, you can work on the process directly just as you did in the last section because the process
ID is the key property of processes. For example, you could terminate the process with the ID 1234 like this:

If you’d rather check your hard disk drive C:\ for errors, the proper invocation is:

([wmi]"Win32_Process='1234'").Terminate()

([wmi]"Win32_LogicalDisk='C:'").Chkdsk(...

55

Three conditions must be met before you can modify a property:

The property must be writeable. Most properties are read-only.

You require the proper permissions for modi�cations. The drive description applies to all users of a computer so only administrators may
modify them.

You must use Put() to save the modi�cation. Without Put(), the modi�cation will not be written back to the system.

However, since this method requires additional arguments, the question here is what you should specify. Invoke the method without
parentheses in order to get initial brief instructions:

Get-Member will tell you which methods a WMI object supports:

There are WMI methods not just in WMI objects that you retrieved with Get-WmiObject. Some WMI classes also support methods. These
methods are called "static".

If you want to renew the IP addresses of all network cards, use the Win32_NetworkAdapterConfiguration class and its static method
RenewDHCPLeaseAll():

Static Methods

([wmiclass]"Win32_NetworkAdapterConfiguration").RenewDHCPLeaseAll().ReturnValue

You get the WMI class by using type conversion. You can either use the [wmiclass] type accelerator or the underlying
[System.Management.ManagementClass].

The methods of a WMI class are also documented in detail inside WMI. For example, you get the description of the Win32Shutdown() method
of the Win32_OperatingSystem class like this:

$class = [wmiclass]'Win32_OperatingSystem'

$class.Options.UseAmendedQualifiers = $true

(($class.methods["Win32Shutdown"]).Qualifiers["Description"]).Value

PS> Get-WmiObject Win32_Process | Get-Member -MemberType Method

Name

---- ---------- ----------

MemberType Definition

AttachDebugger Method System.Management.ManagementBaseObject AttachDebugger()

GetOwner Method System.Management.ManagementBaseObject GetOwner()

GetOwnerSid Method System.Management.ManagementBaseObject GetOwnerSid()

SetPriority Method System.Management.ManagementBaseObject SetPriority(System.
Int32 Priority)

Terminate Method System.Management.ManagementBaseObject Terminate(System.
UInt32 Reason)

TypeName: System.Management.ManagementObject#root\cimv2\Win32_Process

([wmi]"Win32_LogicalDisk='C:'").Chkdsk

MemberType Method :

OverloadDefinitions {System.Management.ManagementBaseObject Chkdsk(System.Boolean FixErrors,
System.BooleanVigorousIndexCheck, System.Boolean SkipFolderCycle,
System.Boolean ForceDismount, System.Boolean RecoverBadSectors,
System.Boolean OkToRunAtBootUp)}

 :

TypeNameOfValue System.Management.Automation.PSMethod :

Value System.Management.ManagementBaseObject Chkdsk(System.Boolean FixErrors,
System.BooleanVigorousIndexCheck, System.Boolean SkipFolderCycle,
System.Boolean ForceDismount, System.Boolean RecoverBadSectors,
System.Boolean OkToRunAtBootUp)

 :

Name Chkdsk :

IsInstance True :

56

If you’d like to learn more about a WMI class or a method, navigate to an Internet search page like Google and specify as keyword the WMI
class name, as well as the method. It’s best to limit your search to the Microsoft MSDN pages: Win32_NetworkAdapterConfiguration
RenewDHCPLeaseAll site:msdn2.microsoft.com.

Nearly every WMI class has a built-in description that explains its purpose. You can view this description only if you �rst set a hidden option
called UseAmendedQualifiers to $true. Once that’s done, the WMI class will readily supply information about its function:

Using WMI Auto-Documentation

$class = [wmiclass]'Win32_LogicalDisk'

$class.psbase.Options.UseAmendedQualifiers = $true

($class.psbase.qualifiers["description"]).Value

The Win32_LogicalDisk class represents a data source that resolves to an actual local storage
device on a Win32 system. The class returns both local as well as mapped logical disks.
However, the recommended approach is to use this class for obtaining information on local
disks and to use the Win32_MappedLogicalDisk for information on mapped logical disk.

In a similarly way, all the properties of the class are documented. The next example retrieves the documentation for the property VolumeDirty
and explains what its purpose is:

WMI returns not only information but can also wait for certain events. If the events occur, an action will be started. In the process, WMI can
alert you when one of the following things involving a WMI instance happens:

You can use these to set up an alarm signal. For example, if you want to be informed as soon as Notepad is started, type:

Select * from __InstanceCreationEvent WITHIN 1 WHERE targetinstance ISA 'Win32_Process' AND targetinstance.name = 'notepad.exe'

$class = [wmiclass]'Win32_LogicalDisk'

$class.psbase.Options.UseAmendedQualifiers = $true

($class.psbase.properties["VolumeDirty"]).Type

Boolean

(($class.psbase.properties["VolumeDirty"]).Qualifiers["Description"]).Value

The VolumeDirty property indicates whether the disk requires chkdsk to be run at next boot up
time. The property is applicable to only those instances of logical disk that represent a
physical disk in the machine. It is not applicable to mapped logical drives.

The Win32Shutdown method provides the full set of shutdown options supported by Win32 operating
systems. The method returns an integer value that can be interpretted as follows:

0 – Successful completion.

Other – For integer values other than those listed above, refer to Win32 error code
documentation.

WMI Events

57

__InstanceCreationEvent: A new instance was added such as a new process was started or a new �le created.

__InstanceModificationEvent: The properties of an instance changed. For example, the FreeSpace property of a drive was modi�ed.

__InstanceDeletionEvent: An instance was deleted, such as a program was shut down or a �le deleted.

__InstanceOperationEvent: This is triggered in all three cases.

Accessing WMI Objects on Another Computer
Use the -ComputerName parameter of Get-WmiObject to access another computer system using WMI. Then specify the name of the
computer after it:

Get-WmiObject -ComputerName pc023 Win32_Process

You can also specify a comma-separated list of a number of computers and return information from all of them. The parameter
-ComputerName accepts an array of computer names. Anything that returns an array of computer names or IP addresses can be valid input.
This line, for example, would read computer names from a �le:

Get-WmiObject Win32_Process -ComputerName (Get-Content c:\serverlist.txt)

WITHIN speci�es the time interval of the inspection and “WITHIN 1” means that you want to be informed no later than one second after the
event occurs. The shorter you set the interval, the more e�ort involved, which means that WMI will require commensurately more computing
power to perform your task. As long as the interval is kept at not less than one second, the computation e�ort will be scarcely perceptible.
Here is an example:

WMI comes with built-in remoting so you can retrieve WMI objects not just from your local machine but also across the network. WMI uses
"traditional" remoting techniques like DCOM which are also used by the Microsoft Management Consoles.

To be able to use WMI remoting, your network must support DCOM calls (thus, the �rewall needs to be set up accordingly). Also, you need to
have Administrator privileges on the target machine.

$alarm = New-Object Management.EventQuery

$alarm.QueryString = "Select * from __InstanceCreationEvent WITHIN 1 WHERE targetinstance ISA
'Win32_Process' AND targetinstance.name = 'notepad.exe'"

$watch = New-Object Management.ManagementEventWatcher $alarm

“Access the live instance:”

$path = $result.targetinstance.__path

$live = [wmi]$path

“Start Notepad after issuing a wait command:”

$result = $watch.WaitForNextEvent()

“Get target instance of Notepad:”

$result.targetinstance

Close Notepad using the live instance

$live.terminate()

Using WMI Remotely

58

Get-WmiObject -Namespace root __Namespace | Format-Wide Name

subscription DEFAULT

MicrosoftDfs CIMV2

Cli nap

SECURITY RSOP

Infineon WMI

directory Policy

ServiceModel SecurityCenter

MSAPPS12 Microsoft

aspnet

Get-WmiObject -Namespace root\msapps12 -List | Where-Object { $_.Name.StartsWith("Win32_") }

Win32_PowerPoint12Tables Win32_Publisher12PageNumber

Win32_Publisher12Hyperlink Win32_PowerPointSummary

Win32_Word12Fonts Win32_PowerPointActivePresentation

Win32_OutlookDefaultFileLocation Win32_Word12Document

If you want to log on to the target system using another user account, use the –Credential parameter to specify additional log on data as in
this example:

$credential = Get-Credential

Get-WmiObject -ComputerName pc023 -Credential $credential Win32_Process

In addition to the built-in remoting capabilities, you can use Get-WmiObject via PowerShell Remoting (if you have set up PowerShell
Remoting correctly). Here, you send the WMI command o� to the remote system:

Note that all objects returned by PowerShell Remoting are read-only and do not contain methods anymore. If you want to change WMI
properties or call WMI methods, you need to do this inside the script block you send to the remote system - so it needs to be done before
PowerShell Remoting sends back objects to your own system.

WMI has a hierarchical structure much like a �le system does. Up to now, all the classes that you have used have come from the WMI
“directory” root\cimv2. Third-party vendors can create additional WMI directories, known as Namespaces, and put in them their own classes,
which you can use to control software, like Microsoft O�ce or hardware like switches and other equipment.

Because the topmost directory in WMI is always named root, from its location you can inspect existing namespaces. Get a display �rst of the
namespaces on this level:

As you see, the cimv2 directory is only one of them. What other directories are shown here depends on the software and hardware that
you use. For example, if you use Microsoft O�ce, you may �nd a directory called MSAPPS12. Take a look at the classes in it:

Invoke-Command { Get-WmiObject Win32_BIOS } -ComputerName server12, server16

WMI Background
Information

59

Win32_ExcelAddIns Win32_PowerPoint12Table

Win32_ADOCoreComponents Win32_Publisher12SelectedTable

Win32_Word12CharacterStyle Win32_Word12Styles

Win32_OutlookSummary Win32_Word12DefaultFileLocation

Win32_WordComAddins Win32_PowerPoint12AlternateStartupLoc

Win32_OutlookComAddins Win32_ExcelCharts

Win32_Word12Settings Win32_FrontPageActiveWeb

Win32_OdbcDriver Win32_AccessProject

Win32_Word12StartupFileLocation Win32_ExcelActiveWorkbook

Win32_FrontPagePageProperty Win32_Publisher12MailMerge

Win32_Language Win32_FrontPageAddIns

Win32_Word12PageSetup Win32_Word12HeaderAndFooter

Win32_ServerExtension Win32_Publisher12ActiveDocumentNoTable

Win32_Word12Addin Win32_WordComAddin

Win32_PowerPoint12PageNumber Win32_JetCoreComponents

Win32_Publisher12Fonts Win32_Word12Table

Win32_OutlookAlternateStartupFile Win32_Word12Tables

Win32_Access12ComAddins Win32_Excel12AlternateStartupFileLoc

Win32_Word12FileConverters Win32_Access12StartupFolder

Win32_Word12ParagraphStyle Win32_Access12ComAddin

Win32_Excel12StartupFolder Win32_PowerPointPresentation

Win32_FrontPageWebProperty Win32_Publisher12Table

Win32_Publisher12StartupFolder Win32_WebConnectionErrorText

Win32_ExcelSheet Win32_Publisher12Tables

Win32_FrontPageTheme Win32_PowerPoint12ComAddins

Win32_Word12Template Win32_ExcelComAddins

Win32_Access12AlternateStartupFileLoc Win32_Word12ActiveDocument

Win32_PublisherSummary Win32_Publisher12DefaultFileLocation

Win32_Word12Field Win32_Publisher12Hyperlinks

Win32_PowerPoint12ComAddin Win32_PowerPoint12Hyperlink

Win32_PowerPoint12DefaultFileLoc Win32_Publisher12Sections

Win32_OutlookStartupFolder Win32_Access12JetComponents

Win32_Word12ActiveDocumentNotable Win32_Publisher12CharacterStyle

Win32_Word12Hyperlinks Win32_Word12MailMerge

Win32_Word12FileConverter Win32_PowerPoint12Hyperlinks

Win32_FrontPageActivePage Win32_Word12Summary

Win32_OleDbProvider Win32_Publisher12PageSetup

Win32_Word12SelectedTable Win32_PowerPoint12StartupFolder

Win32_OdbcCoreComponent Win32_PowerPoint12PageSetup

Win32_FrontPageSummary Win32_AccessSummary

Win32_Word12Hyperlink Win32_OfficeWatsonLog

Win32_Publisher12Font Win32_WebConnectionErrorMessage

Win32_AccessDatabase Win32_Publisher12Styles

Win32_Publisher12ActiveDocument Win32_Word12AlternateStartupFileLocation

Win32_PowerPoint12Fonts Win32_Word12Sections

60

Win32_ExcelComAddin Win32_Excel12DefaultFileLoc

Win32_Word12Fields Win32_ExcelActiveWorkbookNotable

Win32_Publisher12COMAddIn Win32_ExcelWorkbook

Win32_OutlookComAddin Win32_PowerPoint12Font

Win32_FrontPageAddIn Win32_ExcelChart

Win32_WebConnectionError Win32_Word12Font

Win32_RDOCoreComponents Win32_Word12PageNumber

Win32_Publisher12ParagraphStyle Win32_Publisher12COMAddIns

Win32_Transport Win32_Access12DefaultFileLoc

Win32_FrontPageThemes Win32_ExcelSummary

Win32_ExcelAddIn Win32_Publisher12AlternateStartupFileLocation

Win32_PowerPoint12SelectedTable

$boottime = (Get-WmiObject win32_OperatingSystem).LastBootUpTime

$boottime

20111016085609.375199+120

$realtime = [System.Management.ManagementDateTimeConverter]::ToDateTime($boottime)

$realtime

Tuesday, October 16, 2011 8:56:09 AM

Get-WmiObject Win32_OperatingSystem | Format-List *time*

CurrentTimeZone 120 :

LastBootUpTime 20111016085609.375199+120 :

LocalDateTime 20111016153922.498000+120 :

WMI uses special date formats. For example, look at Win32_OperatingSystem objects:

The date and time are represented a sequence of numbers: �rst the year, then the month, and �nally the day. Following this is the time in
hours, minutes, and milliseconds, and then the time zone. This is the so-called DMTF standard, which is hard to read. However, you can use
ToDateTime() of the ManagementDateTimeConverter .NET class to decipher this cryptic format:

Converting the WMI Date Format

61

New-TimeSpan $realtime (Get-Date)

Days 0 :

Hours 6 :

Minutes 47 :

Ticks 244297628189 :

TotalDays 0.282751884478009 :

TotalHours 6.78604522747222 :

TotalMinutes 407.162713648333 :

TotalSeconds 24429.7628189 :

TotalMilliseconds 24429762.8189 :

Seconds 9 :

Milliseconds 762 :

Now you can also use standard date and time cmdlets such as New-TimeSpan to calculate the current system uptime:

62

63

User administration in the Active Directory was a dark
spot in PowerShell Version 1. Microsoft did not ship any
cmdlets to manage AD user accounts or other aspects in
Active Directory. That's why the 3rd party vendor Quest
stepped in and published a free PowerShell Snap-In
with many useful AD cmdlets. Over the years, this
extension has grown to become a de-facto standard,
and many

User Management

Topics Covered:
Connecting to a Domain·

Accessing a Container

Accessing Individual Users or Groups

Reading and Modifying Properties

·

·

·

Invoking Methods·

Creating New Objects·

Chapter 19.

64

PowerShell scripts use Quest AD cmdlets. You can freely download this extension from the Quest
website.
Beginning with PowerShell Version 2.0, Microsoft finally shipped their own AD management
cmdlets. They are included with Server 2008 R2 and also available for download as "RSAT tools
(remote server administration toolkit). The AD cmdlets are part of a module called
"ActiveDirectory". This module is installed by default when you enable the Domain Controller
role on a server. On a member server or client with installed RSAT tools, you have to go to
control panel and enable that feature first.

This chapter is not talking about either one of these extensions. It is introducing you to the build-in
low level support for ADSI methods. They are the beef that makes these two extensions work and
can be called directly, as well.

Don't get me wrong: if you work a lot with the AD, it is much easier for you to get one of the
mentioned AD extensions and use cmdlets for your tasks. If you (or your scripts) just need to get a
user, change some attributes or determine group membership details, it can be easier to use the
direct .NET framework methods shown in this chapter. They do not introduce dependencies: your
script runs without the need to either install the Quest toolkit or the RSAT tools.

Connecting to a Domain
$domain = [ADSI]""

$domain

distinguishedName

{DC=scriptinternals,DC=technet}

If your computer is a member of a domain, the �rst step in managing users is to connect to a log-on domain. You can set up a connection
like this:

If your computer isn’t a member of a domain, the connection setup will fail and generate an error message:

out-lineoutput : Exception retrieving member "ClassId2e4f51ef21dd47e99d3c952918a�9cd":
"The speci�ed domain either does not exist or could not be contacted."

$domain = [DirectoryServices.DirectoryEntry]""

$domain

distinguishedName

{DC=scriptinternals,DC=technet}

[ADSI] is a shortcut to the DirectoryServices.DirectoryEntry .NET type. That’s why you could have set up the previous connection this way
as well:

This is important to know when you want to log on under a di�erent identity. The [ADSI] type accelerator always logs you on using your
current identity. Only the underlying DirectoryServices.DirectoryEntry .NET type gives you the option of logging on with another identity.
But why would anyone want to do something like that? Here are a few reasons:

Logging On Under Other User Names

Note
If you want to manage local user accounts and groups, instead of LDAP: use the WinNT: moniker. But watch out: the text is case-sensitive
here. For example, you can access the local administrator account like this:

We won’t go into local user accounts in any more detail in the following examples. If you must manage local users, also look at net.exe.
It provides easy to use options to manage local users and groups.

$user = [ADSI]"WinNT://./Administrator,user"

$user | Select-Object *

65

External consultant: You may be visiting a company as an external consultant and have brought along your own notebook computer,
which isn’t a member of the company domain. This prevents you from setting up a connection to the company domain. But if you have
a valid user account along with its password at your disposal, you can use your notebook and this identity to access the company domain.
Your notebook doesn’t have to be a domain member to access the domain.

Several domains: Your company has several domains and you want to manage one of them, but it isn’t your log-on domain. More likely
than not, you’ll have to log on to the new domain with an identity known to it.

$domain = new-object DirectoryServices.DirectoryEntry("LDAP://10.10.10.1","domain\user", `
"secret")

$domain.name

scriptinternals

DC=scriptinternals,DC=technet

$domain.distinguishedName

$cred = Get-Credential

$pwd = [Runtime.InteropServices.Marshal]::PtrToStringAuto(

[Runtime.InteropServices.Marshal]::SecureStringToBSTR($cred.Password))

$pwd)

$domain = new-object DirectoryServices.DirectoryEntry("LDAP://10.10.10.1",$cred.UserName,

scriptinternals

$domain.name

Note
Two things are important for ADSI paths: �rst, their names are case-sensitive. That’s why the two following approaches are wrong:

Second, surprisingly enough, ADSI paths use a normal slash. A backslash like the one commonly used in the �le system would generate
error messages:

$domain = [ADSI]"ldap://10.10.10.1" # Wrong!

$useraccount = [ADSI]"Winnt://./Administrator,user" # Wrong!

$domain = [ADSI]"LDAP:\\10.10.10.1" # Wrong!

$useraccount = [ADSI]"WinNT:\\.\Administrator,user" # Wrong!

Tip
Log-on errors are initially invisible. PowerShell reports errors only when you try to connect with a domain. This procedure is known as
“binding.” Calling the $domain.Name property won’t cause any errors because when the connection fails, there isn’t even any property
called Name in the object in $domain.

So, how can you �nd out whether a connection was successful or not? Just invoke the Bind() method, which does the binding. Bind()
always throws an exception and Trap can capture this error.

The code called by Bind() must be in its own scriptblock, which means it must be enclosed in brackets. If an error occurs in the block,
PowerShell will cut o� the block and execute the Trap code, where the error will be stored in a variable.

This is created using script: so that the rest of the script can use the variable.

Then If veri�es whether an error occurred. A connection error always exists if the exception thrown by Bind() has the -2147352570 error
code. In this event, If outputs the text of the error message and stops further instructions from running by using Break.

66

Logging onto a domain that isn’t your own with another identity works like this:

If you don’t want to put log-on data in plain text in your code, use Get-Credential.

Since the password has to be given when logging on in plain text, and Get-Credential returns the password in encrypted form, an
intermediate step is required in which it is converted into plain text:

Domains have a hierarchical structure like the �le system directory structure. Containers inside the domain are either pre-de�ned directories
or subsequently created organizational units. If you want to access a container, specify the LDAP path to the container. For example, if you
want to access the pre-de�ned directory Users, you could access like this:

The fact that you are logged on as a domain member naturally simpli�es the procedure considerably because now you need neither the
IP address of the domain controller nor log-on data. The LDAP name of the domain is also returned to you by the domain itself in the
distinguishedName property. All you have to do is specify the container that you want to visit:

Accessing a Container

$ldap = "CN=Users"

$domain = [ADSI]""

$dn = $domain.distinguishedName

$users

$users = [ADSI]"LDAP://$ldap,$dn"

$ldap = "/CN=Users,DC=scriptinternals,DC=technet"

$cred = Get-Credential

$pwd = [Runtime.InteropServices.Marshal]::PtrToStringAuto(

$users = new-object

[Runtime.InteropServices.Marshal]::SecureStringToBSTR($cred.Password))

$users

distinguishedName

{CN=Users,DC=scriptinternals,DC=technet}

DirectoryServices.DirectoryEntry("LDAP://10.10.10.1$ldap",$cred.UserName, $pwd)

$cred = Get-Credential

$pwd = [Runtime.InteropServices.Marshal]::PtrToStringAuto(

[Runtime.InteropServices.Marshal]::SecureStringToBSTR($cred.Password))

$domain = new-object DirectoryServices.DirectoryEntry("LDAP://10.10.10.1",$cred.UserName, $pwd)

trap { $script:err = $_ ; continue } &{ $domain.Bind($true); $script:err = $null }

if ($err.Exception.ErrorCode -ne -2147352570)

{

Write-Host -Fore Red $err.Exception.Message

break

}

else

{

Write-Host -Fore Green "Connection established."

}

Logon failure: unknown user name or bad password.

By the way, the error code -2147352570 means that although the connection was established, Bind() didn’t �nd an object to which it
could bind itself. That’s OK because you didn’t specify any particular object in your LDAP path when the connection was being set up.

67

At some point, you’d like to know who or what the container contains to which you have set up a connection. The approach here is
somewhat less intuitive because now you need the PSBase object. PowerShell wraps Active Directory objects and adds new properties and
methods while removing others.

Unfortunately, PowerShell also in the process gets rid of the necessary means to get to the contents of a container. PSBase returns the
original (raw) object just like PowerShell received it before conversion, and this object knows the Children property:

Listing Container Contents

There are various ways to access individual users or groups. For example, you can �lter the contents of a container. You can also speci�cally
select individual items from a container or access them directly through their LDAP path. And you can search for items across directories.

Accessing Individual Users
or Groups

While in the LDAP language pre-de�ned containers use names including CN=, specify OU= for organizational units. So, when you log on as
a user to connect to the sales OU, which is located in the company OU, you should type:

$ldap = "OU=sales, OU=company"

$domain = [ADSI]""

$dn = $domain.distinguishedName

$users

$users = [ADSI]"LDAP://$ldap,$dn"

$ldap = "CN=Users"

$domain = [ADSI]""

$dn = $domain.distinguishedName

$users.PSBase.Children

$users = [ADSI]"LDAP://$ldap,$dn"

distinguishedName

{CN=admin,CN=Users,DC=scriptinternals,DC=technet}

{CN=Administrator,CN=Users,DC=scriptinternals,DC=technet}

{CN=All,CN=Users,DC=scriptinternals,DC=technet}

{CN=ASPNET,CN=Users,DC=scriptinternals,DC=technet}

{CN=Belle,CN=Users,DC=scriptinternals,DC=technet}

{CN=Consultation2,CN=Users,DC=scriptinternals,DC=technet}

{CN=Consultation3,CN=Users,DC=scriptinternals,DC=technet}

{CN=ceimler,CN=Users,DC=scriptinternals,DC=technet}

(...)

68

$users.PSBase.Children | Format-Table sAMAccountName, distinguishedName -wrap

sAMAccountName distinguishedName

-------------- -----------------

{admin} {CN=admin,CN=Users,DC=scriptinternals,DC=technet}

{Administrator} {CN=Administrator,CN=Users,DC=scriptinternals,DC=technet}

{All} {CN=All,CN=Users,DC=scriptinternals,DC=technet}

{ASPNET} {CN=ASPNET,CN=Users,DC=scriptinternals,DC=technet}

{Belle} {CN=Belle,CN=Users,DC=scriptinternals,DC=technet}

Children gets back fully structured objects that, as shown in Chapter 5, you can process further in the PowerShell pipeline. Among other
things, if you want to list only users, not groups, you could query the sAMAccountType property and use it as a �lter criterion:

Using Filters and the Pipeline

$ldap = "CN=Users"

$domain = [ADSI]""

$dn = $domain.distinguishedName

$users.PSBase.Children | Where-Object { $_.sAMAccountType -eq 805306368 }

$users = [ADSI]"LDAP://$ldap,$dn"

$users.PSBase.Children | Select-Object -first 1 |

ForEach-Object { $_.sAMAccountName + $_.objectClass }

admin

top

person

organizationalPerson

user

If you know the ADSI path to a particular object, you don’t have to resort to a circuitous approach but can access it directly through the
pipeline �lter. You can �nd the path of an object in the distinguishedName property:

Directly Accessing Elements

As it happens, the objectClass property contains an array with all the classes from which the object is derived. The listing process proceeds
from the general to the speci�c so you can �nd only those elements that are derived from the user class:

$users.PSBase.Children | Where-Object { $_.objectClass -contains "user" }

distinguishedName

{CN=Administrator,CN=Users,DC=scriptinternals,DC=technet}

{CN=admin,CN=Users,DC=scriptinternals,DC=technet}

{CN=ASPNET,CN=Users,DC=scriptinternals,DC=technet}

{CN=Belle,CN=Users,DC=scriptinternals,DC=technet}

(...)

69

Another approach makes use of the class that you can always �nd in the objectClass property.

$ldap = "CN=Guest,CN=Users"

$domain = [ADSI]""

$dn = $domain.distinguishedName

$guest = [ADSI]"LDAP://$ldap,$dn"

$guest | Format-List *

objectClass {top, person, organizationalPerson, user}:

cn {Guest}:

description {Predefined account for guest access to the computer or domain):

distinguishedName {CN=Guest,CN=Users,DC=scriptinternals,DC=technet}:

instanceType {4}:

whenCreated {12.11.2005 12:31:31 PM}:

whenChanged {06.27.2006 09:59:59 AM}:

uSNCreated {System.__ComObject}:

memberOf {CN=Guests,CN=Builtin,DC=scriptinternals,DC=technet}:

uSNChanged {System.__ComObject}:

name {Guest}:

objectGUID {240 255 168 180 1 206 85 73 179 24 192 164 100 28 221 74}:

userAccountControl {66080}:

badPwdCount {0}:

codePage {0}:

countryCode {0}:

badPasswordTime {System.__ComObject}:

lastLogoff {System.__ComObject}:

logonHours {255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255}

:

pwdLastSet {System.__ComObject}:

primaryGroupID {514}:

objectSid {1 5 0 0 0 0 0 5 21 0 0 0 184 88 34 189 250 183 7 172 165 75 78 29
245 1 0 0}

:

accountExpires {System.__ComObject}:

logonCount {0}:

sAMAccountName {Guest}:

sAMAccountType {805306368}:

objectCategory {CN=Person,CN=Schema,CN=Configuration,DC=scriptinternals,DC=technet}:

isCriticalSystemObject {True}:

lastLogon {System.__ComObject}:

nTSecurityDescriptor {System.__ComObject}:

{consultation2} {CN=consultation2,CN=Users,DC=scriptinternals,DC=technet}

{consultation3} {CN=consultation3,CN=Users,DC=scriptinternals,DC=technet}

(...)

Using the asterisk as wildcard character, Format-List makes all the properties of an ADSI object visible so that you can easily see which
information is contained in it and under which names.

For example, if you want to access the Guest account directly, specify its distinguishedName. If you’re a domain member, you don’t have to
go to the trouble of using the distinguishedName of the domain:

70

You already know what to use to read out all the elements in a container: PSBase.Children. However, by using PSBase.Find() you can also
retrieve individual elements from a container:

$domain = [ADSI]""

$users = $domain.psbase.Children.Find("CN=Users")

$useraccount = $users.psbase.Children.Find("CN=Administrator")

$useraccount.Description

Prede�ned account for managing the computer or domain.

$UserName = "*mini*"

$searcher = new-object DirectoryServices.DirectorySearcher([ADSI]"")

$searcher.filter = "(&(objectClass=user)(sAMAccountName= $UserName))"

$searcher.findall()

Obtaining Elements from a Container

You’ve had to know exactly where in the hierarchy of domain a particular element is stored to access it. In larger domains, it can be really
di�cult to relocate a particular user account or group. That’s why a domain can be accessed and searched like a database.

Once you have logged on to a domain that you want to search, you need only the following few lines to �nd all of the user accounts that
match the user name in $UserName. Wildcard characters are allowed:

$domain = new-object

DirectoryServices.DirectoryEntry("LDAP://10.10.10.1","domain\user","secret")

$UserName = "*mini*"

$searcher = new-object DirectoryServices.DirectorySearcher($domain)

$searcher.filter = "(&(objectClass=user)(sAMAccountName= $UserName))"

$searcher.findall() | Format-Table -wrap

Path

Properties

LDAP://10.10.10.1/CN=Administrator,CN=Users,DC=scripti {samaccounttype,
lastlogon, objectsid, nternals,DC=technet

whencreated...}

If you haven’t logged onto the domain that you want to search, get the domain object through the log-on:

The results of the search are all the objects that contain the string “mini” in their names, no matter where they’re located in the domain:

$searcher.filter = "(&(objectClass=user)(sAMAccountName= $UserName))"

The crucial part takes place in the search �lter, which looks a bit strange in this example:

Searching for Elements

71

Get-LDAPUser can be used very �exibly and locates user accounts everywhere inside the domain. Just specify the name you’re looking for or
a part of it:

Get-LDAPUser gets the found user objects right back. You can subsequently process them in the PowerShell pipeline—just like the elements
that you previously got directly from children. How does Get-LDAPUser manage to search only the part of the domain you want it to? The
following snippet of code is the reason:

Find all users who have an "e" in their names:

Get-LDAPUser *e*

Find only users with "e" in their names that are in the "main office" OU or come under it.

Get-LDAPUser *e* “OU=main office,OU=company”

function Get-LDAPUser([string]$UserName, [string]$Start)

{

Use current logon domain:

$domain = [ADSI]""

OR: log on to another domain:

$domain = new-object DirectoryServices.DirectoryEntry("LDAP://10.10.10.1","domain\user",

"secret")

if ($start -ne "")

{

$startelement = $domain.psbase.Children.Find($start)

}

else

{

$startelement = $domain

}

$searcher = new-object DirectoryServices.DirectorySearcher($startelement)

$searcher.filter = "(&(objectClass=user)(sAMAccountName=$UserName))"

$Searcher.CacheResults = $true

$Searcher.SearchScope = "Subtree"

$Searcher.PageSize = 1000

$searcher.findall()

}

The �lter merely compares certain properties of elements according to certain requirements. It checks accordingly whether the term user
turns up in the objectClass property and whether the sAMAccountName property matches the speci�ed user name. Both criteria are combined
by the “&” character, so they both have to be met. This would enable you to assemble a convenient search function.

Note
The search function Get-LDAPUser searches the current log-on domain by default. If you want to log on to another domain, note the
appropriate lines in the function and specify your log-on data.

72

First, we checked whether the user speci�ed the $start second parameter. If yes, Find() is used to access the speci�ed container in the domain
container (of the topmost level) and this is de�ned as the starting point for the search. If $start is missing, the starting point is the topmost
level of the domain, meaning that every location is searched.

You could now freely extend the example function by extending or modifying the search �lter. Here are some useful examples:

if ($start -ne "")

{

$startelement = $domain.psbase.Children.Find($start)

}

$startelement = $domain

}

else

{

Pro Tip
The function also speci�es some options that are de�ned by the user:

SearchScope determines whether all child directories should also be searched recursively beginning from the starting point, or whether
the search should be limited to the start directory. PageSize speci�es in which “chunk” the results of the domain are to be retrieved. If you
reduce the PageSize, your script may respond more freely, but will also require more network tra�c. If you request more, the respective
“chunk” will still include only 1,000 data records.

$Searcher.CacheResults = $true

$Searcher.SearchScope = "Subtree"

$Searcher.PageSize = 1000

73

Description

(&(objectCategory=person)(objectClass=User)) Find only user accounts, not computer accounts

(sAMAccountType=805306368) Find only user accounts (much quicker, but
harder to read)

(&(objectClass=user)(sn=Weltner)
(givenName=Tobias))

Find user accounts with a particular name

(&(objectCategory=person)(objectClass=user)
(msNPAllowDialin=TRUE))

Find user with dial-in permission

(&(objectCategory=person)(objectClass=user)
(pwdLastSet=0))

(&(objectCategory=computer)(!description=*)) Find all computer accounts having no
description

Find user who has to change password at next
logon

Search Filter

(&(objectCategory=person)(description=*)) Find all user accounts having no description

(&(objectCategory=person)(objectClass=user)
(whenCreated>=20050318000000.0Z))

Find all elements created after March 18, 2005

(&(objectCategory=person)(objectClass=user)
(|(accountExpires=9223372036854775807)
(accountExpires=0)))

Find all users whose account never expires
(OR condition, where only one condition must
be met)

(&(objectClass=user)(userAccountControl:
 1.2.840.113556.1.4.803:=2))

Find all disabled user accounts (bitmask
logical AND)

Table 19.1: Examples of LDAP queries

$searchuser = Get-LDAPUser "Guest"

$useraccount = $searchuser.GetDirectoryEntry()

$useraccount.psbase.NativeGUID

f0ffa8b401ce5549b318c0a4641cdd4a

$acccount = [ADSI]"LDAP://<GUID=f0ffa8b401ce5549b318c0a4641cdd4a>"

$acccount

distinguishedName

{CN=Guest,CN=Users,DC=scriptinternals,DC=technet}

Elements in a domain are subject to change. The only thing that is really constant is the so-called GUID of an account. A GUID is assigned just
one single time, namely when the object is created, after which it always remains the same. You can �nd out the GUID of an element by
accessing the account. For example, use the practical Get-LDAPUser function above:

Because the results returned by the search include no “genuine” user objects, but only reduced SearchResult objects, you must �rst use
GetDirectoryEntry() to get the real user object. This step is only necessary if you want to process search results. You can �nd the GUID of an
account in PSBase.NativeGUID.

In the future, you can access precisely this account via its GUID. Then you won’t have to care whether the location, the name, or some other
property of the user accounts changes. The GUID will always remain constant:

$guid = "<GUID=f0ffa8b401ce5549b318c0a4641cdd4a>"

$acccount = new-object DirectoryServices.DirectoryEntry("LDAP://10.10.10.1/$guid","domain\
user", `"secret")

distinguishedName

{CN=Guest,CN=Users,DC=scriptinternals,DC=technet}

Specify the GUID when you log on if you want to log on to the domain:

Accessing Elements Using GUID

74

(&(objectCategory=person)(objectClass=user)
(userAccountControl:1.2.840.113556.1.4.
803:=32))

Find all users whose password never expires

(&(objectClass=user)(!userAccountControl:
1.2.840.113556.1.4.803:=65536))

Find all users whose password expires (logical
NOT using "!")

(&(objectCategory=group)(!groupType:
1.2.840.113556.1.4.803:=2147483648))

Finding all distribution groups

(&(objectCategory=Computer)(!userAccountControl
:1.2.840.113556.1.4.803:=8192))

Finding all computer accounts that are not
domain controllers

In the last section, you learned how to access individual elements inside a domain: either directly through the ADSI path, the GUID,
searching through directory contents, or launching a search across domains.

The elements you get this way are full-�edged objects. You use the methods and properties of these elements to control them. Basically,
everything applies that you read about in Chapter 6. In the case of ADSI, there are some additional special features:

Reading and Modifying
Properties

$useraccount = Get-LDAPUser Guest

$useraccount | Format-List *

Path : LDAP://10.10.10.1/CN=Guest,CN=Users,DC=scriptinternals,DC=technet

Properties : {samaccounttype, lastlogon, objectsid, whencreated...}

There are theoretical and a practical approaches to establishing which properties any ADSI object contains.

Just What Properties Are There?

The practical approach is the simplest one: if you output the object to the console, PowerShell will convert all the properties it contains
into text so that you not only see the properties, but also right away which values are assigned to the properties. In the following example,
the user object is the result of an ADSI search, to be precise, of the above-mentioned Get-LDAPUser function:

Practical Approach: Look

Note
In the following examples, we will use the Get-LDAPUser function described above to access user accounts, but you can also get at user
accounts with one of the other described approaches.

75

Twin objects: Every ADSI object actually exists twice: �rst, as an object PowerShell synthesizes and then as a raw ADSI object. You can
access the underlying raw object via the PSBase property of the processed object. The processed object contains all Active Directory
attributes, including possible schema extensions. The underlying base object contains the .NET properties and methods you need for
general management. You already saw how to access these two objects when you used Children to list the contents of a container.

Phantom objects: Search results of a cross-domain search look like original objects only at �rst sight. In reality, these are reduced
SearchResult objects. You can get the real ADSI object by using the GetDirectoryEntry() method. You just saw how that happens in the
section on GUIDs.

Properties: All the changes you made to ADSI properties won’t come into e�ect until you invoke the SetInfo() method.

{top, person, organizationalPerson, user}

$useraccount = $useraccount.GetDirectoryEntry()

$useraccount | Format-List *

objectClass :

cn {Guest}:

description {Predefined account for guest access to the computer or domain):

distinguishedName {CN=Guest,CN=Users,DC=scriptinternals,DC=technet}:

instanceType {4}:

whenCreated {12.12.2005 12:31:31 PM}:

whenChanged {06.27.2006 09:59:59 AM}:

uSNCreated {System.__ComObject}:

memberOf {CN=Guests,CN=Builtin,DC=scriptinternals,DC=technet}:

uSNChanged {System.__ComObject}:

name {Guest}:

objectGUID {240 255 168 180 1 206 85 73 179 24 192 164 100 28 221 74}:

userAccountControl {66080}:

badPwdCount {0}:

codePage {0}:

countryCode {0}:

badPasswordTime {System.__ComObject}:

lastLogoff {System.__ComObject}:

logonHours {255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255}

:

pwdLastSet {System.__ComObject}:

primaryGroupID {514}:

objectSid {1 5 0 0 0 0 0 5 21 0 0 0 184 88 34 189 250 183 7 172 165 75 78 29
245 1 0 0}

:

accountExpires {System.__ComObject}:

logonCount {0}:

sAMAccountName {Guest}:

sAMAccountType {805306368}:

objectCategory {CN=Person,CN=Schema,CN=Configuration,DC=scriptinternals,DC=technet}:

isCriticalSystemObject {True}:

lastLogon {System.__ComObject}:

nTSecurityDescriptor {System.__ComObject}:

$useraccount.PSBase | Format-List *

AuthenticationType : Secure

Children {}:

Guid {Guest}:

description b4a8fff0-ce01-4955-b318-c0a4641cdd4a:

ObjectSecurity System.DirectoryServices.ActiveDirectorySecurity:

Name CN=Guest:

NativeGuid f0ffa8b401ce5549b318c0a4641cdd4a:

In addition, further properties are available in the underlying base object:

The result is meager but, as you know by now, search queries only return a reduced SearchResult object. You get the real user object from it
by calling GetDirectoryEntry(). Then you’ll get more information:

76

NativeObject {}:

Parent System.DirectoryServices.DirectoryEntry:

Password :

Path LDAP://10.10.10.1/CN=Guest,CN=Users,DC=scriptinternals,DC=technet:

Properties {objectClass, cn, description, distinguishedName...}:

SchemaClassName user:

SchemaEntry System.DirectoryServices.DirectoryEntry:

UsePropertyCache True:

Username scriptinternals\Administrator:

Options System.DirectoryServices.DirectoryEntryConfiguration:

Site :

Container :

$useraccount | Get-Member -memberType *Property

Name

---- ---------- ----------

MemberType Definition

accountExpires Property System.DirectoryServices.PropertyValueCollection
accountExpires {get;set;}

badPasswordTime Property System.DirectoryServices.PropertyValueCollection
badPasswordTime {get;set;}

badPwdCount Property System.DirectoryServices.PropertyValueCollection
badPwdCount {get;set;}

cn Property System.DirectoryServices.PropertyValueCollection
cn {get;set;}

codePage Property System.DirectoryServices.PropertyValueCollection
codePage {get;set;}

countryCode Property System.DirectoryServices.PropertyValueCollection
countryCode {get;set;}

description Property System.DirectoryServices.PropertyValueCollection
description {get;set;}

distinguishedName Property System.DirectoryServices.PropertyValueCollection
distinguishedName {get;...

instanceType Property System.DirectoryServices.PropertyValueCollection
instanceType {get;set;}

isCriticalSystemObject Property System.DirectoryServices.PropertyValueCollection
isCriticalSystemObject ...

lastLogoff Property System.DirectoryServices.PropertyValueCollection
lastLogoff {get;set;}

The di�erence between these two objects: the object that was returned �rst represents the respective user. The underlying base object is
responsible for the ADSI object itself and, for example, reports where it is stored inside a domain or what is its unique GUID. The UserName
property, among others, does not state whom the user account represents (which in this case is Guest), but who called it (Administrator).

The practical approach we just saw is quick and returns a lot of information, but it is also incomplete. PowerShell shows only those properties
in the output that actually do include a value right then (even if it is an empty value). In reality, many more properties are available so the
tool you need to list them is Get-Member:

Theoretical Approach: Much More Thorough

77

lastLogon Property System.DirectoryServices.PropertyValueCollection
lastLogon {get;set;}

logonCount Property System.DirectoryServices.PropertyValueCollection
logonCount {get;set;}

logonHours Property System.DirectoryServices.PropertyValueCollection
logonHours {get;set;}

memberOf Property System.DirectoryServices.PropertyValueCollection
memberOf {get;set;}

name Property System.DirectoryServices.PropertyValueCollection
name {get;set;}

nTSecurityDescriptor Property System.DirectoryServices.PropertyValueCollection
nTSecurityDescriptor {g...

objectCategory Property System.DirectoryServices.PropertyValueCollection
objectCategory {get;set;}

objectClass Property System.DirectoryServices.PropertyValueCollection
objectClass {get;set;}

objectGUID Property System.DirectoryServices.PropertyValueCollection
objectGUID {get;set;}

objectSid Property System.DirectoryServices.PropertyValueCollection
objectSid {get;set;}

primaryGroupID Property System.DirectoryServices.PropertyValueCollection
primaryGroupID {get;set;}

pwdLastSet Property System.DirectoryServices.PropertyValueCollection
pwdLastSet {get;set;}

sAMAccountName Property System.DirectoryServices.PropertyValueCollection
sAMAccountName {get;set;}

sAMAccountType Property System.DirectoryServices.PropertyValueCollection
sAMAccountType {get;set;}

userAccountControl Property System.DirectoryServices.PropertyValueCollection
userAccountControl {get...

uSNChanged Property System.DirectoryServices.PropertyValueCollection
uSNChanged {get;set;}

uSNCreated Property System.DirectoryServices.PropertyValueCollection
uSNCreated {get;set;}

whenChanged Property System.DirectoryServices.PropertyValueCollection
whenChanged {get;set;}

whenCreated Property System.DirectoryServices.PropertyValueCollection
whenCreated {get;set;}

$useraccount.Description = “guest account”

$useraccount.SetInfo()

In this list, you will also learn whether properties are only readable or if they can also be modi�ed. Modi�able properties are designated by
{get;set;} and read-only by {get;}. If you change a property, the modi�cation won’t come into e�ect until you subsequently call SetInfo().

78

The convention is that object properties are read using a dot, just like all other objects (see Chapter 6). So, if you want to �nd out what is in
the Description property of the $useraccount object, formulate:

Reading Properties

$useraccount.PSBase | Get-Member -MemberType *Property

Name

---- ---------- ----------

MemberType Definition

AuthenticationType Property System.DirectoryServices.AuthenticationTypes
AuthenticationType {get;set;}

Children Property System.DirectoryServices.DirectoryEntries Children {get;}

Container Property System.ComponentModel.IContainer Container {get;}

Guid Property System.Guid Guid {get;}

Name Property System.String Name {get;}

NativeGuid Property System.String NativeGuid {get;}

NativeObject Property System.Object NativeObject {get;}

ObjectSecurity Property System.DirectoryServices.ActiveDirectorySecurity
ObjectSecurity {get;set;}

Path Property System.String Path {get;set;}

Properties Property System.DirectoryServices.PropertyCollection
Properties {get;}

SchemaClassName Property System.String SchemaClassName {get;}

SchemaEntry Property System.DirectoryServices.DirectoryEntry
SchemaEntry {get;}

Site Property System.ComponentModel.ISite Site {get;set;}

UsePropertyCache Property System.Boolean UsePropertyCache {get;set;}

Username Property System.String Username {get;set;}

Options Property System.DirectoryServices.DirectoryEntryConfiguration
Options {get;}

Parent Property System.DirectoryServices.DirectoryEntry Parent {get;}

Password Property System.String Password {set;}

TypeName: System.Management.Automation.PSMemberSet

$useraccount.Description

Predefined account for guest access

But there are also two other options and they look like this:

$useraccount.Get("Description")

$useraccount.psbase.InvokeGet("Description")

Moreover, Get-Member can supply information about the underlying PSBase object:

79

Modifying Properties

At �rst glance, both seem to work identically. However, di�erences become evident when you query another property: AccountDisabled.

The �rst variant returns no information at all, the second an error message, and only the third the right result. What happened here?

The object in $useraccount is an object processed by PowerShell. All attributes (directory properties) become visible in this object as
properties. However, ADSI objects can contain additional properties, and among these is AccountDisabled.

PowerShell doesn’t take these additional properties into consideration. The use of a dot categorically suppresses all errors as only Get()
reports the problem: nothing was found for this element in the LDAP directory under the name AccountDisabled.

In fact, AccountDisabled is located in another interface of the element as only the underlying PSBase object, with its InvokeGet() method,
does everything correctly and returns the contents of this property.

In a rudimentary case, you can modify properties like any other object: use a dot to assign a new value to the property. Don’t forget afterwards
to call SetInfo() so that the modi�cation is saved. That’s a special feature of ADSI. For example, the following line adds a standard description
for all users in the user directory if there isn’t already one:

In fact, there are also a total of three approaches to modifying a property. That will soon become very important as the three ways behave
di�erently in some respects:

$useraccount.AccountDisabled

$useraccount.Get("AccountDisabled")

+ $useraccount.Get(<<<< "AccountDisabled")

False

$useraccount.psbase.InvokeGet("AccountDisabled")

Exception calling "Get" with 1 Argument(s):"The directory property cannot be found in the cache.”

At line:1 Char:14

$ldap = "CN=Users"

$domain = [ADSI]""

$dn = $domain.distinguishedName

$users.PSBase.Children | Where-Object { $_.sAMAccountType -eq 805306368 } |

$users = [ADSI]"LDAP://$ldap,$dn"

Where-Object { $_.Description.toString() -eq "" } |

ForEach-Object { $_.Description = "Standard description"; $_.SetInfo(); $_.sAMAccountName + "
was changed." }

$searchuser = Get-LDAPUser Guest

$useraccount = $searchuser.GetDirectoryEntry()

Tip
As long as you want to work on properties that are displayed when you use Format-List * to output the object to the console, you won’t
have any di�culty using a dot or Get(). For all other properties, you’ll have to use PSBase.InvokeGet().Use GetEx() iIf you want to have
the contents of a property returned as an array.

80

As long as you change the normal directory attributes of an object, all three methods will work in the same way. Di�culties arise when you
modify properties that have special functions. For example among these is the AccountDisabled property, which determines whether an
account is disabled or not. The Guest account is normally disabled:

The result is “nothing” because this property is—as you already know from the last section—not one of the directory attributes that
PowerShell manages in this object. That’s not good because something very peculiar will occur in PowerShell if you now try to set this
property to another value:

PowerShell has summarily input to the object a new property called AccountDisabled. If you try to pass this object to the domain, it will
resist: the AccountDisabled property added by PowerShell does not match the AccountDisabled domain property. This problem always occurs
when you want to set a property of an ADSI object that hadn’t previously been speci�ed.

To eliminate the problem, you have to �rst return the object to its original state so you basically remove the property that PowerShell added
behind your back. You can do that by using GetInfo() to reload the object from the domain. This shows that GetInfo() is the opposite number
of SetInfo():

$useraccount.AccountDisabled = $false

$useraccount.SetInfo()

+ $useraccount.SetInfo(<<<<)

$useraccount.AccountDisabled

False

Exception calling "SetInfo" with 0 Argument(s): "The speci�ed directory service attribute or value already exists.
(Exception from HRESULT: 0x8007200A)"

At line:1 Char:18

$useraccount.SetInfo()

$useraccount.Description = "A new description"

Method 1:

$useraccount.SetInfo()

$useraccount.Put("Description", "Another new description")

Method 2:

$useraccount.SetInfo()

$useraccount.PSBase.InvokeSet("Description", "A third description")

Method 3:

$useraccount.AccountDisabled

$useraccount.GetInfo()

Note
Once PowerShell has added an “illegal” property to the object, all further attempts will fail to store this object in the domain by using
SetInfo(). You must call GetInfo() or create the object again:

81

$useraccount | Format-List *

objectClass {top, person, organizationalPerson, user}:

cn {Guest}:

distinguishedName {CN=Guest,CN=Users,DC=scriptinternals,DC=technet}:

instanceType {4}:

whenCreated {12.12.2005 12:31:31}:

whenChanged {17.10.2007 11:59:36}:

uSNCreated {System.__ComObject}:

memberOf {CN=Guests,CN=Builtin,DC=scriptinternals,DC=technet}:

uSNChanged {System.__ComObject}:

name {Guest}:

objectGUID {240 255 168 180 1 206 85 73 179 24 192 164 100 28 221 74}:

userAccountControl {66080}:

badPwdCount {0}:

Deleting Properties

Finally, use the third above-mentioned variant to set the property, namely not via the normal object processed by PowerShell, but via its
underlying raw version:

Now the modi�cation works. The lesson: the only method that can reliably and �awlessly modify properties is InvokeSet() from the underlying
PSBase object.

The other two methods that modify the object processed by PowerShell will only work properly with the properties that the object does
display when you output it to the console.

To completely remove the Description property, use PutEx() with these parameters:

Then, the Description property will be gone completely when you call all the properties of the object:

Table 19.2: PutEx() operations

If you want to completely delete a property, you don’t have to set its contents to 0 or empty text. If you delete a property, it will be completely
removed. PutEx() can delete properties and also supports properties that store arrays. PutEx() requires three arguments. The �rst speci�es what
PutEx() is supposed to do and corresponds to the values listed in Table 19.2. . The second argument is the property name that is supposed to
be modi�ed. Finally, the third argument is the value that you assign to the property or want to remove from it.

$useraccount.psbase.InvokeSet("AccountDisabled", $false)

$useraccount.SetInfo()

$useraccount.PutEx(1, "Description", 0)

$useraccount.SetInfo()

82

Meaning

1 Delete property value (property remains intact)

Replace property value completely

Add information to a property

Delete parts of a property

2

3

4

Numerical Value

codePage {0}:

countryCode {0}:

badPasswordTime {System.__ComObject}:

lastLogoff {System.__ComObject}:

lastLogon {System.__ComObject}:

logonHours {255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255}

:

pwdLastSet {System.__ComObject}:

primaryGroupID {514}:

objectSid {1 5 0 0 0 0 0 5 21 0 0 0 184 88 34 189 250 183 7 172 165 75 78 29
 245 1 0 0}

:

accountExpires {System.__ComObject}:

logonCount {0}:

sAMAccountName {Guest}:

sAMAccountType {805306368}:

objectCategory {CN=Person,CN=Schema,CN=Configuration,DC=scriptinternals,DC=technet}:

isCriticalSystemObject {True}:

nTSecurityDescriptor {System.__ComObject}:

$useraccount.wwwHomePage = "http://www.powershell.com"

$useraccount.favoritefood = "Meatballs"

+ $useraccount.L <<<< oritefood = "Meatballs"

"System.Management.Automation.PSMethod".

$useraccount.SetInfo()

Cannot set the Value property for PSMemberInfo object of type

At line:1 Char:11

The Schema of Domains
The directory service comes equipped with a list of permitted data called a schema to prevent meaningless garbage from getting stored in the
directory service. Some information is mandatory and has to be speci�ed for every object of the type, others (like a home page) are optional.
The internal list enables you to get to the properties that you may deposit in an ADSI object. The SchemaClass property will tell you which
“operating manual” you need for the object:

ImportantEven Get-Member won’t return to you any more indications of the Description property. That’s a real de�ciency as you have no way
to recognize what other properties the ADSI object may possibly support as long as you’re using PowerShell’s own resources.. PowerShell
always shows only properties that are de�ned.

However, this doesn’t mean that the Description property is now gone forever. You can create a new one any time:

Interesting, isn’t it? This means you could add entirely di�erent properties that the object didn’t have before:

It turns out that the user account accepts the wwwHomePage property (and so sets the Web page of the user on user properties), while
“favoritefood” was rejected. Only properties allowed by the schema can be set.

$useraccount.Description = "New description"

$useraccount.SetInfo()

83

$schema = $domain.PSBase.Children.find("CN=user,CN=Schema,CN=Configuration")

$schema.systemMayContain | Sort-Object

accountExpires

aCSPolicyName

adminCount

badPasswordTime

badPwdCount

businessCategory

codepage

controlAccessRights

dBCSPwd

defaultClassStore

desktopProfile

dynamicLDAPServer

groupMembershipSAM

groupPriority

groupsToIgnore

homeDirectory

homeDrive

homePhone

initials

lastLogoff

lastLogon

lastLogonTimestamp

lmPwdHistory

localeID

lockoutTime

logonCount

logonHours

logonWorkstation

mail

manager

maxStorage

mobile

msCOM-UserPartitionSetLink

msDRM-IdentityCertificate

msDS-Cached-Membership

msDS-Cached-Membership-Time-Stamp

mS-DS-CreatorSID

Take a look under this name in the schema of the domain. The result is the schema object for user objects, which returns the names of all
permitted properties in SystemMayContain.

$useraccount.psbase.SchemaClassName

user

84

msDS-Site-Affinity

msDS-User-Account-Control-Computed

msIIS-FTPDir

msIIS-FTPRoot

mSMQDigests

mSMQDigestsMig

mSMQSignCertificates

mSMQSignCertificatesMig

msNPAllowDialin

msNPCallingStationID

msNPSavedCallingStationID

msRADIUSCallbackNumber

msRADIUSFramedIPAddress

msRADIUSFramedRoute

msRADIUSServiceType

msRASSavedCallbackNumber

msRASSavedFramedIPAddress

msRASSavedFramedRoute

networkAddress

ntPwdHistory

o

operatorCount

otherLoginWorkstations

pager

preferredOU

primaryGroupID

profilePath

pwdLastSet

scriptPath

servicePrincipalName

terminalServer

unicodePwd

userAccountControl

userCertificate

userParameters

userPrincipalName

userSharedFolder

userSharedFolderOther

userWorkstations

PutEx() is not only the right tool for deleting properties but also for properties that have more than one value. Among these is
otherHomePhone, the list of a user’s supplementary telephone contacts. The property can store just one telephone number or several, which is
how you can reset the property telephone numbers:

Setting Properties Having Several Values

85

But note that this would delete any other previously entered telephone numbers. If you want to add a new telephone number to an existing
list, proceed as follows:

$useraccount.PutEx(2, "otherHomePhone", @("123", "456", "789"))

$useraccount.SetInfo()

$useraccount.PutEx(3, "otherHomePhone", @("555"))

$useraccount.SetInfo()

A very similar method allows you to delete selected telephone numbers on the list:

$useraccount.PutEx(4, "otherHomePhone", @("456", "789"))

$useraccount.SetInfo()

All the objects that you’ve been working with up to now contain not only properties, but also methods. In contrast to properties, methods do
not require you to call SetInfo() when you invoke a method that modi�es an object. . To �nd out which methods an object contains, use
Get-Member to make them visible (see Chapter 6):

Surprisingly, the result is something of a disappointment because the ADSI object PowerShell delivers contains no methods. The true
functionality is in the base object, which you get by using PSBase:

$guest | Get-Member -memberType *Method

Invoking Methods

$guest.psbase | Get-Member -memberType *Method

Name

---- ---------- ----------

MemberType Definition

add_Disposed Method System.Void add_Disposed(EventHandler value)

Close Method System.Void Close()

CommitChanges Method System.Void CommitChanges()

CopyTo Method System.DirectoryServices.DirectoryEntry CopyTo
(DirectoryEntry newPare...

CreateObjRef Method System.Runtime.Remoting.ObjRef CreateObjRef
(Type requestedType)

DeleteTree Method System.Void DeleteTree()

Dispose Method System.Void Dispose()

Equals Method System.Boolean Equals(Object obj)

GetHashCode Method System.Int32 GetHashCode()

GetLifetimeService Method System.Object GetLifetimeService()

GetType Method System.Type GetType()

get_AuthenticationType Method System.DirectoryServices.AuthenticationTypes
get_AuthenticationType()

TypeName: System.Management.Automation.PSMemberSet

86

get_Children Method System.DirectoryServices.DirectoryEntries
get_Children()

get_Container Method System.ComponentModel.IContainer get_Container()

get_Guid Method System.Guid get_Guid()

get_Name Method System.String get_Name()

get_NativeGuid Method System.String get_NativeGuid()

get_ObjectSecurity Method System.DirectoryServices.ActiveDirectorySecurity
get_ObjectSecurity()

get_Site Method System.ComponentModel.ISite get_Site()

get_UsePropertyCache Method System.Boolean get_UsePropertyCache()

get_Username Method System.String get_Username()

InitializeLifetimeService Method System.Object InitializeLifetimeService()

Invoke Method System.Object Invoke(String methodName, Params
Object[] args)

InvokeGet Method System.Object InvokeGet(String propertyName)

InvokeSet Method System.Void InvokeSet(String propertyName, Params
Object[] args)

MoveTo Method System.Void MoveTo(DirectoryEntry newParent),
System.Void MoveTo(Dire...

RefreshCache Method System.Void RefreshCache(), System.Void RefreshCache
(String[] propert...

remove_Disposed Method System.Void remove_Disposed(EventHandler value)

Rename Method System.Void Rename(String newName)

set_AuthenticationType Method System.Void set_AuthenticationType(AuthenticationTypes
value)

set_ObjectSecurity Method System.Void set_ObjectSecurity(ActiveDirectorySecurity
value)

set_Password Method System.Void set_Password(String value)

set_Path Method System.Void set_Path(String value)

set_Site Method System.Void set_Site(ISite value)

set_UsePropertyCache Method System.Void set_UsePropertyCache(Boolean value)

set_Username Method System.Void set_Username(String value)

ToString Method System.String ToString()

get_Options Method System.DirectoryServices.DirectoryEntryConfiguration
get_Options()

get_Parent Method System.DirectoryServices.DirectoryEntry get_Parent()

get_Path Method System.String get_Path()

get_Properties Method System.DirectoryServices.PropertyCollection
get_Properties()

get_SchemaClassName Method System.String get_SchemaClassName()

get_SchemaEntry Method System.DirectoryServices.DirectoryEntry
get_SchemaEntry()

87

$useraccount.SetPassword("New password")

$useraccount.ChangePassword("Old password", "New password")

function Get-LDAPGroup([string]$UserName, [string]$Start)

{

Use current logon domain:

$domain = [ADSI]""

OR: log on to another domain:

$domain = new-object DirectoryServices.DirectoryEntry("LDAP://10.10.10.1","domain\user",
"secret")

if ($start -ne "")

{

$startelement = $domain.psbase.Children.Find($start)

}

Exception calling "SetPassword" with 1 Argument(s):

At line:1 Char:22

+ $realuser.SetPassword(<<<< "secret")

"The password does not meet the password policy requirements.

Check the minimum password length, password complexity and password

history requirements. (Exception from HRESULT: 0x800708C5)"

The password of a user account is an example of information that isn’t stored in a property. That’s why you can’t just read out user accounts.
Instead, methods ensure the immediate generation of a completely con�dential hash value out of the user account and that it is deposited in
a secure location. You can use the SetPassword() and ChangePassword() methods to change passwords:

SetPassword() requires administrator privileges and simply resets the password.

That can be risky because in the process you lose access to all your certi�cates outside a domain, including the crucial certi�cate for the
Encrypting File System (EFS), though it’s necessary when users forget their passwords. ChangePassword doesn’t need any higher level of
permission because con�rmation requires giving the old password.

When you change a password, be sure that it meets the demands of the domain. Otherwise, you’ll be rewarded with an error message
like this one:

Methods also set group memberships. Of course, the �rst thing you need is the groups in which a user becomes a member. That basically
works just like user accounts as you could specify the ADSI path to a group to access the group. Alternatively, you can use a universal function
that helpfully picks out groups for you:

Changing Passwords

Controlling Group Memberships

Note
Here, too, the de�ciencies of Get-Member become evident when it is used with ADSI objects because Get-Member suppresses both
methods instead of displaying them. You just have to “know” that they exist.

88

else

{

$startelement = $domain

}

$searcher = new-object DirectoryServices.DirectorySearcher($startelement)

$searcher.filter = "(&(objectClass=group)(sAMAccountName=$UserName))"

$Searcher.CacheResults = $true

$Searcher.SearchScope = "Subtree"

$Searcher.PageSize = 1000

$searcher.findall()

}

$admin = (Get-LDAPGroup "Domain Admins").GetDirectoryEntry()

$admin.member

CN=Tobias Weltner,CN=Users,DC=scriptinternals,DC=technet

CN=Markus2,CN=Users,DC=scriptinternals,DC=technet

CN=Belle,CN=Users,DC=scriptinternals,DC=technet

CN=Administrator,CN=Users,DC=scriptinternals,DC=technet

$guest = (Get-LDAPUser Guest).GetDirectoryEntry()

$guest.memberOf

CN=Guests,CN=Builtin,DC=scriptinternals,DC=technet

There are two sides to group memberships. Once you get the user account object, the memberOf property will return the groups in which the
user is a member:

In Which Groups Is a User a Member?

The other way of looking at it starts out from the group: members are in the Member property in group objects:

Which Users Are Members of a Group?

To add a new user to a group, you need the group object as well as (at least) the ADSI path of the user, who is supposed to become a member.
To do this, use Add():

Adding Users to a Group

Note
Groups on their part can also be members in other groups. So, every group object has not only the Member property with its members,
but also MemberOf with the groups in which this group is itself a member.

89

$company = $domain.Create("organizationalUnit", "OU=Idera")

$company.SetInfo()

$sales = $company.Create("organizationalUnit", "OU=Sales")

$sales.SetInfo()

$marketing = $company.Create("organizationalUnit", "OU=Marketing")

$marketing.SetInfo()

$service = $company.Create("organizationalUnit", "OU=Service")

$service.SetInfo()

Creating New Objects

$administrators.Member = $administrators.Member + $user.distinguishedName

$administrators.SetInfo()

$administrators.Member += $user.distinguishedName

$administrators.SetInfo()

$administrators = (Get-LDAPGroup “Domain Admins”).GetDirectoryEntry()

$user = (Get-LDAPUser Cofi1).GetDirectoryEntry()

$administrators.Add($user.psbase.Path)

$administrators.SetInfo()

Instead of Add() use the Remove() method to remove users from the group again..

In the example, the user Co�1 is added to the group of Domain Admins. It would have su�ced to specify the user’s correct ADSI path to the
Add() method. But it’s easier to get the user and pass the path property of the PSBase object.
Aside from Add(), there are other ways to add users to groups:

The containers at the beginning of this chapter also know how to handle properties and methods. So, if you want to create new organizational
units, groups, and users, all you have to do is to decide where these elements should be stored inside a domain. Then, use the Create()
method of the respective container.

$domain = [ADSI]""

Let’s begin experimenting with new organizational units that are supposed to represent the structure of a company. Since the �rst
organizational unit should be created on the topmost domain level, get a domain object:

Next, create a new organizational unit called “company” and under it some additional organizational units:

Creating New Organizational Units

90

$user = $sales.Create("User", "CN=MyNewUser")

$user.SetInfo()

$user.Description = "My New User"

$user.SetPassword("TopSecret99")

$user.psbase.InvokeSet('AccountDisabled', $false)

$user.SetInfo()

$group_marketing = $marketing.Create("group", "CN=Marketinglights")

$group_marketing.psbase.InvokeSet("groupType", -2147483648 + 2)

$group_marketing.SetInfo()

#

$group_newsletter = $company.Create("group", "CN=Newsletter")

$group_newsletter.psbase.InvokeSet("groupType", 2)

$group_newsletter.SetInfo()

Table 19.3: Group Types

Groups can be created as easily as organizational units. You should decide again in which container the group is to be created and specify the
name of the group. In addition, de�ne with the groupType property the type of group that you want to create, because in contrast to
organizational units there are several di�erent types of groups:

Security groups have their own security ID so you can assign permissions to them. Distribution groups organize only members, but have no
security function. In the following example, a global security group and a global distribution group are created:

Create New Groups

To create a new user, proceed analogously, and �rst create the new user object in a container of your choice. Then, you can �ll out the required
properties and set the password using SetPassword(). Using the AccountDisabled property, enable the account. The following lines create a
new user account in the previously created organization unit “Sales”:

Creating New Users

Note
Instead of Create() use the Delete() method to delete objects.

91

Code

Global 2

4

8

Add -

Local

Universal

As security

2147483648group

Group

92

Since PowerShell is layered on the .NET Framework,
you already know from Chapter 6 how you can use
.NET code in PowerShell to make up for missing
functions. In this chapter, we’ll take up this idea once
again. You’ll learn about the options PowerShell has
for creating command extensions on the basis of the
.NET Framework. You should be able to even create
your own cmdlets at the end of this chapter.

Loading .NET Libraries and
Compiling Code

Topics Covered:

Loading .NET Libraries·

Creating New .NET Libraries·

Chapter 20.

Loading .NET Libraries

Creating New .NET
Libraries

Many functionalities of the .NET Framework are available right in PowerShell. For example, the following two lines su�ces to set up a dialog
window:

In Chapter 6, you learned in detail about how this works and what an “assembly” is. PowerShell used Add-Type to load a system library and
was then able to use the classes from it to call a static method like MsgBox().

That’s extremely useful when there is already a system library that o�ers the method you’re looking for, but for some functionality even the
.NET Framework doesn’t have any right commands. For example, you have to rely on your own resources if you want to move text to the
clipboard. The only way to get it done is to access the low-level API functions outside the .NET Framework.

As soon as you need more than just a few lines of code or access to API functions to implement the kinds of extensions you want, it makes
sense to write the extension directly in .NET program code. The following example shows how a method called CopyToClipboard() might
look in VB.NET. The VB.NET code is assigned to the $code variable as plain text:

Add-Type -assembly Microsoft.VisualBasic

[Microsoft.VisualBasic.Interaction]::MsgBox("Do you agree?", "YesNoCancel,Question", "Question")

$code = @'

Imports Microsoft.VisualBasic

Imports System

Public Class Utility

Namespace ClipboardAddon

Private Declare Function OpenClipboard Lib "user32" (ByVal hwnd As Integer) As Integer

Private Declare Function EmptyClipboard Lib "user32" () As Integer

Private Declare Function CloseClipboard Lib "user32" () As Integer

Private Declare Function GlobalAlloc Lib "kernel32" (ByVal wFlags As Integer, ByVal dwBytes
As Integer) As Integer

Private Declare Function SetClipboardData Lib "user32"(ByVal wFormat As Integer, ByVal
hMem As Integer) As Integer

Private Declare Function GlobalLock Lib "kernel32" (ByVal hMem As Integer) As Integer

Private Declare Function GlobalUnlock Lib "kernel32" (ByVal hMem As Integer) As Integer

Private Declare Function lstrcpy Lib "kernel32" (ByVal lpString1 As Integer, ByVal
lpString2 As String) As Integer

Public Sub CopyToClipboard(ByVal text As String)

Dim result As Boolean = False

Dim mem As Integer = GlobalAlloc(&H42, text.Length + 1)

Dim lockedmem As Integer = GlobalLock(mem)

lstrcpy(lockedmem, text)

If GlobalUnlock(mem) = 0 Then

93

You have to �rst compile the code before PowerShell can execute it. Compilation is a translation of your source code into machine-readable
intermediate language (IL). There are two options here.

To compile the source code and make it a type that you can use, feed the source code to Add-Type and specify the programming language
the source code used:

Alternatively, methods can also be static. For example, MsgBox() in the �rst example is a static method. To call static methods, you need neither
New-Object nor any instances. Static methods are called directly through the class in which they are de�ned.

If you would rather use CopyToClipboard() as a static method, all you need to do is to make a slight change to your source code.
Replace this line:

Now, you can derive an object from your new type and call the method CopyToClipboad(). Done!

$object = New-Object ClipboardAddon.Utility

$object.CopyToClipboard(“Hi Everyone!”)

In-Memory Compiling

If OpenClipboard(0) Then

EmptyClipboard()

result = SetClipboardData(1, mem)

CloseClipboard()

End If

End If

End Sub

End Class

End Namespace

'@

$type = Add-Type -TypeDefinition $code -Language VisualBasic

Public Sub CopyToClipboard(ByVal text As String)

Type this line instead:

Public Shared Sub CopyToClipboard(ByVal text As String)

Tip
You might be wondering why in your custom type, you needed to use New-Object �rst to get an object. With MsgBox() in the previous
example, you could call that method directly from the type.

CopyToClipboard() is created in your source code as a dynamic method, which requires you to �rst create an instance of the class, and
that’s exactly what New-Object does. Then the instance can call the method.

94

DLL Compilation

PS> $code = @'

Imports Microsoft.VisualBasic

Imports System

Public Class Utility

Namespace ClipboardAddon

Private Declare Function OpenClipboard Lib "user32" (ByVal hwnd As Integer) As Integer

Private Declare Function EmptyClipboard Lib "user32" () As Integer

Private Declare Function CloseClipboard Lib "user32" () As Integer

Private Declare Function GlobalAlloc Lib "kernel32" (ByVal wFlags As Integer, ByVal
dwBytes As Integer) As Integer

Private Declare Function SetClipboardData Lib "user32"(ByVal wFormat As Integer, ByVal
hMem As Integer) As Integer

Private Declare Function GlobalLock Lib "kernel32" (ByVal hMem As Integer) As Integer

Private Declare Function GlobalUnlock Lib "kernel32" (ByVal hMem As Integer) As Integer

Private Declare Function lstrcpy Lib "kernel32" (ByVal lpString1 As Integer, ByVal
lpString2 As String) As Integer

Public Shared Sub CopyToClipboard(ByVal text As String)

Dim result As Boolean = False

Dim mem As Integer = GlobalAlloc(&H42, text.Length + 1)

Dim lockedmem As Integer = GlobalLock(mem)

lstrcpy(lockedmem, text)

If GlobalUnlock(mem) = 0 Then

If OpenClipboard(0) Then

EmptyClipboard()

result = SetClipboardData(1, mem)

CloseClipboard()

End If

End If

End Sub

End Class

End Namespace

PS> Add-Type -TypeDefinition $code -Language VisualBasic -OutputType Library -OutputAssembly

c:\powershell\extension.dll

'@

Once you have compiled your source code, then you can immediately call the method like this:

With Add-Type, you can even compile and generate �les. In the previous example, your source code was compiled in-memory on the �y. What
if you wanted to protect your intellectual property somewhat and compile a DLL that your solution would then load?

Here is how you create your own DLL (make sure the folder c:\powershell exists, or else create it or change the output path in the
command below):

[ClipboardAddon.Utility]::CopyToClipboard(“Hi Everyone!”)

95

PS> Add-Type -Path C:\powershell\extension.dll

PS> [Clipboardaddon.utility]::CopyToClipboard("Hello World!")

After you run these commands, you should �nd a �le called c:\powershell\extension.dll with the compiled content of your code. If not, try this
code in a new PowerShell console. Your experiments with the in-memory compilation may have interfered.

To load and use your DLL from any PowerShell session, go ahead and use this code:

You can even compile and create console applications and windows programs that way - although that is an edge case. To create applications,
you better use a speci�c development environment like Visual Studio.

96

