
PowerShell
eBook
by Tobias Weltner

Index
by Tobias Weltner

The Power
Console

Interactive
PowerShell

Variables

Arrays and
Hashtables

The PowerShell
Pipeline

Working
with Objects

03

19

48

74

94

112

Topics Covered:

· Starting PowerShell
· First Steps with the Console
 · Incomplete and Multi-Line Entries
 · Important Keyboard Shortcuts
 · Deleting Incorrect Entries
 · Overtype Mode
 · Command History: Reusing Entered Commands
 · Automatically Completing Input
 · Scrolling Console Contents
 · Selecting and Inserting Text
 · QuickEdit Mode
 · Standard Mode
· Customizing the Console
 · Opening Console Properties
 · Defining Options
 · Specifying Fonts and Font Sizes
 · Setting Window and Buffer Size
 · Selecting Colors
 · Directly Assigning Modifications in PowerShell
 · Saving Changes
· Piping and Routing
 · Piping: Outputting Information Page by Page
 · Redirecting: Storing Information in Files
· Summary

Welcome to PowerShell! This chapter
will introduce you to the PowerShell
console and show you how to configure
it, including font colors and sizes,
editing and display options.

Chapter 1.
The PowerShell Console

Starting PowerShell
On Windows 7 and Server 2008 R2, Windows PowerShell is installed by default. To use PowerShell on older systems, you need to
download and install it. The update is free. The simplest way to find the appropriate download is to visit an Internet search engine
and search for "KB968930 Windows XP" (replace the operating system with the one you use). Make sure you pick the correct up-
date. It needs to match your operating system language and architecture (32-bit vs. 64-bit).

After you installed PowerShell, you'll find PowerShell in the Accessories program group. Open this program group, click on Windows
PowerShell and then launch the PowerShell executable. On 64-bit systems, you will also find a version marked as (x86) so you can
run PowerShell both in the default 64-bit environment and in an extra 32-bit environment for backwards compatibility.

You can also start PowerShell directly. Just press (Windows)+(R) to open the Run window and then enter powershell (Enter). If you
use PowerShell often, you should open the program folder for Windows PowerShell and right-click on Windows PowerShell. That will
give you several options:

· Add to the start menu: On the context menu, click on Pin to Start Menu so that PowerShell will be displayed directly on your start
menu from now on and you won't need to open its program folder first.
· Quick Launch toolbar: Click Add to Quick Launch toolbar if you use Windows Vista and would like to see PowerShell right on the
Quick Launch toolbar inside your taskbar. Windows XP lacks this command so XP users will have to add PowerShell to the Quick
Launch toolbar manually.

· Jump List: On Windows 7, after launching PowerShell, you can right-click the PowerShell icon in your taskbar and choose Pin to
Taskbar. This will not only keep the PowerShell icon in your taskbar so you can later easily launch PowerShell. It also gives access to
its new "Jump List": right-click the icon (or pull it upwards with your mouse). The jump list contains a number of useful PowerShell
functions: you can launch PowerShell with full administrator privileges, run the PowerShell ISE, or open the PowerShell help file. By
the way: drag the pinned icon all to the left in your taskbar. Now, pressing WIN+1 will always launch PowerShell. And here are two
more tips: hold SHIFT while clicking the PowerShell icon in your taskbar will open a new instance, so you can open more than one
PowerShell console. Holding SHIFT+CTRL while clicking the PowerShell icon opens the PowerShell console with full Administrator
privileges (provided User Account Control is enabled on your system).

· Keyboard shortcuts: Administrators particularly prefer using a keyboard instead of a mouse. If you select Properties on the context
menu, you can specify a key combination in the hot-key field. Just click on this field and press the key combination intended to start
PowerShell, such as (Alt)+(P). In the properties window, you also ha ve the option of setting the default window size to start Power-
Shell in a normal, minimized, or maximized window.

Figure 1.1: How to always open PowerShell with administrator rights

(Run without administrative privileges whenever possible)
04

First Steps with
the Console
After PowerShell starts, its console window opens, and you see a blinking text prompt, asking for your input with no icons or menus.
PowerShell is a command console and almost entirely operated via keyboard input. The prompt begins with “PS” and after it is the
path name of the directory where you are located. Start by trying out a few commands. For example, type:

As soon as you press (Enter), your entry will be sent to PowerShell. Because PowerShell has never heard of the command “hello” you
will be confronted with an error message highlighted in red.

For example, if you’d like to see which files and folders are in your current directory, then type dir (Enter). You’ll get a text listing of
all the files in the directory. PowerShell’s communication with you is always text-based. PowerShell can do much more than display
simple directory lists. You can just as easily list all running processes or all installed hotfixes: Just pick a different command as the
next one provides a list of all running processes:

PowerShell’s advantage is its tremendous flexibility since it allows you to control and display nearly all the information and operations
on your computer. The command cls deletes the contents of the console window and the exit command ends PowerShell.

Figure 1.2: First commands in the PowerShell console

hello (Enter)

Get-Process (Enter)

Get-Hotfix (Enter)

05

Incomplete and Multi-line Entries
Whenever you enter something PowerShell cannot understand, you get a red error message, explaining what went wrong. However, if
you enter something that isn’t wrong but incomplete (like a string with one missing closing quote), PowerShell gives you a chance to
complete your input. You then see a double-prompt (“>>”), and once you completed the line and pressed ENTER twice, PowerShell
executes the command. You can also bail out at any time and cancel the current command or input by pressing: (Ctrl)+(C).

The “incomplete input” prompt will also appear when you enter an incomplete arithmetic problem like this one:

This feature enables you to make multi-line PowerShell entries:

The continuation prompt generally takes its cue from initial and terminal characters like open and closed brackets or quotation marks
at both ends of a string. As long as the symmetry of these characters is incorrect, you’ll continue to see the prompt. However, you can
activate it even in other cases:

So, if the last character of a line is what is called a “back-tick” character, the line will be continued. You can retrieve that special char-
acter by pressing (`).

2 + (Enter)
>> 6 (Enter)
>> (Enter)
 8

“This is my little multiline entry.(Enter)

>> I’m now writing a text of several lines. (Enter)

>> And I’ll keep on writing until it’s no longer fun.”(Enter)

>>(Enter)

This is my little multiline entry.

I’m now writing a text of several lines.

And I’ll keep on writing until it’s no longer fun.

dir `(Enter)

>> -recurse(Enter)

>>(Enter)

Important Keyboard Shortcuts
Shortcuts are important since almost everything in PowerShell is keyboard-based. For example, by pressing the keys (Arrow left) and
(Arrow right), you can move the blinking cursor to the left or right. Use it to go back and correct a typo. If you want to move the cursor
word by word, hold down (Ctrl) while pressing the arrow keys. To place the cursor at the beginning of a line, hit (Home). Pressing (End)
will send the cursor to the end of a line.

06

If you haven’t entered anything, then the cursor won’t move since it will only move within entered text. There’s
one exception: if you’ve already entered a line and pressed (Enter) to execute the line, you can make this line
appear again character-by-character by pressing (Arrow right).

Important

Deleting Incorrect Entries

Overtype Mode

Command History:
Reusing Entered Commands

If you’ve mistyped something, press (Backspace) to delete the character to the left of the blinking cursor. (Del) erases the character to
the right of the cursor. And you can use (Esc) to delete your entire current line.

The hotkey (Ctrl)+(Home) works more selectively: it deletes all the characters at the current position up to the beginning of the line.
Characters to the right of the current position (if there are any) remain intact. (Ctrl)+(End) does it the other way around and deletes
everything from the current position up to the end of the line. Both combinations are useful only after you’ve pressed (Arrow left) to
move the cursor to the middle of a line, specifically when text is both to the left and to the right of the cursor.

If you enter new characters and they overwrite existing characters, then you know you are in type-over mode. By pressing (Insert) you
can switch between insert and type-over modes. The default input mode depends on the console settings you select. You’ll learn more
about console settings soon.The “incomplete input” prompt will also appear when you enter an incomplete arithmetic problem like this
one:

The most awesome feature is a built-in search through all of the commands you used in your current session: simply type “#” and then
some search text that you know exists in one or more of your previous commands. Next, type TAB one or more times to see all the
commands that contained your keyword. Press ENTER to execute the command once you found it, or edit the command line to your
liking.

If you just wanted to polish or correct one of your most recent commands, press (Arrow up) to re-display the command that you
entered. Press (Arrow up) and (Arrow down) to scroll up and down your command history. Using (F5) and (F8) do the same as the up
and down arrow keys.

This command history feature is extremely useful. Later, you’ll learn how to configure the number of commands the console
“remembers”. The default setting is the last 50 commands. You can display all the commands in your history by pressing (F7) and then
scrolling up and down the list to select commands using (Arrow up) and (Arrow down) and (Enter).

07

Important

The numbers before the commands in the Command History list only denote the sequence number. You cannot
enter a number to select the associated command. What you can do is move up and down the list by hitting the
arrow keys.

Simply press (F9) to ‘activate’ the numbers so that you can select a command by its number. This opens a menu
that accepts the numbers and returns the desired command.

The keyboard sequence (Alt)+(F7) will clear the command history and start you off with a new list.

Automatically Completing Input

(F8) provides more functionality than (Arrow up) as it doesn’t just show the last command you entered, but keeps a record of the
characters you’ve already typed in. If, for example, you’d like to see all the commands you’ve entered that begin with “d”, type:

The “incomplete input” prompt will also appear when you enter an incomplete arithmetic problem like this one:

Press (F8) several times. Every time you press a key another command will be displayed from the command history provided that
you’ve already typed in commands with an initial “d.”

An especially important key is (Tab). It will save you a great deal of typing (and typing errors). When you press this key, PowerShell will
attempt to complete your input automatically. For example, type:

The command cd changes the directory in which you are currently working. Put at least one space behind the command and then
press (Tab). PowerShell suggests a sub-directory. Press (Tab) again to see other suggestions. If (Tab) doesn’t come up with any
suggestions, then there probably aren’t any sub-directories available.

This feature is called Tab-completion, which works in many places. For example, you just learned how to use the command Get-
Process, which lists all running processes. If you want to know what other commands there are that begin with “Get-”, then type:

Just make sure that there’s no space before the cursor when you press (Tab). Keep hitting (Tab) to see all the commands that begin
with “Get-”.

d (F8)

cd (Tab)

Get-(Tab)

08

Important

Important

A more complete review of the Tab-completion feature is available in Chapter 9.

Wildcards are allowed in path names. For example, if you enter c:\pr*e (Tab) in a typical Windows system,
PowerShell will respond with “c:\Program Files”.

PowerShell will automatically put the entire response inside double quotation marks if the response contains
whitespace characters.

Tab-completion works really well with long path names that require a lot of typing. For example:

Every time you press (Tab), PowerShell will prompt you with a new directory or a new file that begins with “c:\p.” So, the more
characters you type, the fewer options there will be. In practice, you should type in at least four or five characters to reduce the number
of suggestions.

When the list of suggestions is long, it can take a second or two until PowerShell has compiled all the possible suggestions and
displays the first one.

c:\p(Tab)

The visible part of your console depends on the size of your console window, which you can change with your mouse. Drag the
window border while holding down your left mouse button until the window is the size you want. Note that the actual contents of the
console, the “screen buffer,” don’t change. So, if the window is too small to show everything, you should use the scroll bars.

Use your mouse if you’d like to select text inside the PowerShell window and copy it onto the clipboard. Move the mouse pointer to
the beginning of the selected text, hold down the left mouse button and drag it over the text area that you want to select.

Scrolling Console Contents

Selecting and Inserting Text

QuickEdit is the default mode for selecting and copying text in PowerShell. Select the text using your mouse and PowerShell will
highlight it. After you’ve selected the text, press (Enter) or right-click on the marked area. This will copy the selected text to the
clipboard which you can now paste into other applications. To unselect press (Esc).

You can also insert the text in your console at the blinking command line by right-clicking your mouse.

Quick Edit Mode

09

Figure 1.3: Marking and copying text areas in QuickEdit mode

If QuickEdit is turned off and you are in Standard mode, the simplest way to mark and copy text is to right-click in the console window.
If QuickEdit is turned off, a context menu will open.

Select Mark to mark text and Paste if you want to insert the marked text (or other text contents that you’ve copied to the clipboard) in
the console.

It’s usually more practical to activate QuickEdit mode so that you won’t have to use the context menu

Standard Mode

The basic settings of your PowerShell console are configured in a special Properties dialog box. Click on the PowerShell icon on the far
left of the title bar of the console window to open it.

Opening Console Properties

Customizing
the Console
You can customize a variety of settings in the console including edit mode, screen buffer size, font colors, font sizes etc.

10

Figure 1.4: Opening console properties

That will open a context menu. You should select Properties and a dialog box will open.

To get help, click on the question mark button on the title bar of the window. A question mark is then pinned to your mouse pointer.
Next, click on the option you need help for. The help appears as a ScreenTip window.

Under the heading Options are four panels of options:

Opening Console Properties

Figure 1.5: Defining the QuickEdit and Insert modes

11

· Edit options: You should select the QuickEdit mode as well as the Insert mode. We’ve already discussed the advantages of the

· QuickEdit mode: it makes it much easier to select, copy, and insert text. The Insert mode makes sure that new characters don’t
overwrite existing input so new characters will be added without erasing text you’ve already typed in when you’re editing command
lines.

· Cursor size: Here is where you specify the size of the blinking cursor.

· Display options: Determine whether the console should be displayed as a window or full screen. The “window” option is best so that
you can switch to other windows when you’re working. The full screen display option is not available on all operating systems.

· Command history: Here you can choose how many command inputs the console “remembers”. This allows you to select a
command from the list by pressing (Arrow up) or (F7). The option Discard Old Duplicates ensures that the list doesn’t have any
duplicate entries. So, if you enter one command twice, it will appear only once in the history list.

On the Font tab, you can choose both the font and the font size displayed in the console.

The console often uses the raster font as its default. This font is available in a specific range of sizes with available sizes shown in the
“Size” list. Scalable TrueType fonts are much more flexible. They’re marked in the list by a “TT” symbol. When you select a TrueType
font, you can choose any size in the size list or enter them as text in the text box. TrueType fonts can be dynamically scaled.

Specifying Fonts and Font Sizes

Figure 1.6: Specifying new fonts and font sizes

You should also try experimenting with TrueType fonts by using the “bold fonts” option. TrueType fonts are often more readable if
they’re displayed in bold.

12

You should also try experimenting with TrueType fonts by using the “bold fonts” option. TrueType fonts are often more readable if
they’re displayed in bold.

Your choice of fonts may at first seem a bit limited. To get more font choices, you can add them to the console font list. The
limited default font list is supposed to prevent you from choosing unsuitable fonts for your console.

One reason for this is that the console always uses the same width for each character (fixed width fonts). This restricts the
use of most Windows fonts because they’re proportional typefaces: every character has its own width. For example, an “i” is
narrower than an “m”. If you’re sure that a certain font will work in the console, then here’s how to add the font to the console
font list.

Open your registry editor. In the key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ CurrentVersion\Console\
TrueTypeFont insert a new “string value” and give this entry the name “00” (numbers, not letters).

If there’s already an entry that has this name, then call the new entry “000” or add as many zeroes as required to avoid
conflicts with existing entries. You should then double-click your new entry to open it and enter the name of the font. The
name must be exactly the same as the official font name, just the way it’s stated under the key HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows NT\CurrentVersion\Fonts.

The newly added font will now turn up in the console’s option field. However, the new font will work only after you either log
off at least once or restart your computer. If you fail to do so, the console will ignore your new font when you select it in the
dialog box.

 Pro Tip

On the Layout tab, you can specify how large the screen buffer should be, meaning how much information the console should
“remember” and how far back you can scroll with the scroll bars.

You should select a width of at least 120 characters in the window buffer size area with the height should be at least 1,000 lines or
larger. This gives you the opportunity to use the scroll bars to scroll the window contents back up so that you can look at all the results
of your previous commands.

Setting Window and Buffer Size

Figure 1.7: Specifying the size of the window buffer
13

On the Colors tab, you can select your own colors for four areas:

· Screen text: Console font
· Screen background: Console background color
· Popup text: Popup window font, such as command history’s (F7)
· Popup background: Popup window background color

You can also set the window size and position on this tab if you’d like your console to open at a certain size and screen position on
your display. Choose the option Let system position window and Windows will automatically determine at what location the console
window will open.

Selecting Colors

You have a palette of 16 colors for these four areas. So, if you want to specify a new font color, you should first select the option
Screen Text and click on one of the 16 colors. If you don’t like any of the 16 colors, then you can mix your own special shade of color.
Just click on a palette color and choose your desired color value at the upper right from the primary colors red, green, and blue.

Figure 1.8: Select better colors for your console

Some of the console configuration can also be done from within PowerShell code. You’ll hear more about this later. To give you a quick
impression, take a look at this:

Directly Assigning
Modifications in PowerShell

$host.ui.rawui (Enter)
$host.ui.rawui.ForegroundColor = “Yellow” (Enter)
$host.ui.rawui.WindowTitle = “My Console” (Enter)

14

These changes will only be temporary. Once you close and re-open PowerShell, the changes are gone. You would have to include
these lines into one of your “profile scripts” which run every time you launch PowerShell to make them permanent. You can read more
about this in Chapter 10.

Once you’ve successfully specified all your settings in the dialog box, you can close the dialog box. If you’re using Windows Vista or
above, all changes will be saved immediately, and when you start PowerShell the next time, your new settings will already be in effect.
You may need Admin rights to save settings if you launched PowerShell with a link in your start menu that applies for all users.

If you’re using Windows XP, you’ll see an additional window and a message asking you whether you want to save changes temporarily
(Apply properties to current window only) or permanently (Modify shortcut that started this window).

Directly Assigning
Modifications in PowerShell

Piping and
Routing

The pipe command more outputs information screen page by screen page. You will need to press a button (like Space) to continue to
the next page.

Piping uses the vertical bar (|). The results of the command to the left of the pipe symbol are then fed into the command on the right
side of the pipe symbol. This kind of piping is also known in PowerShell as the “pipeline”:

You can press (Ctrl)+(C) to stop output. Piping also works with other commands, not just more. For example, if you’d like to get a
sorted directory listing, pipe the result to Sort-Object and specify the columns you would like to sort:

You’ll find more background information on piping as well as many useful examples in Chapter 5.

You may want to view the information page by page or save it in a file since some commands output a lot of information.

Piping: Outputting
Information Page by Page

Get-Process | more (Enter)

dir | Sort-Object -Property Length, Name (Enter)

15

If you’d like to redirect the result of a command to a file, you can use the redirection symbol “>”:

If you only specify the file name, PowerShell will look for it in all folders listed in the PATH environment variable. So to open a file, you
will have to specify its absolute or relative path name. For example:

Or, to make it even simpler, you can use Tab-completion and hit (Tab) after the file name:

The file name will automatically be completed with the absolute path name, and then you can open it by pressing (Enter):

You can also append data to an existing file. For example, if you’d like to supplement the help information in the file with help on native
commands, you can attach this information to the existing file with the redirection symbol “>>”:

The information won’t appear in the console but will instead be redirected to the specified file. You can then open the file.

However, opening a file in PowerShell is different from opening a file in the classic console:

Redirecting: Storing Information in Files

 .\help.txt (Enter)

 .\help.txt (Tab)

& “C:\Users\UserA\help.txt” (Enter)

Cmd /c help >> help.txt (Enter)

Help > help.txt (Enter)

 Help > help.txt (Enter)

 The term “help.txt” is not recognized as a cmdlet, function,
 operable program, or script file. Verify the term and try again.
 At line:1 character:8
 + help.txt <<<<

If you’d like to directly process the result of a command, you won’t need traditional redirection at all because PowerShell can also store
the result of any command to a variable:

16

Variables are universal data storage and variable names always start with a “$”. You’ll find out more about variables in Chapter 3.

PowerShell is part of the operating system starting with Windows 7 and Server 2008 R2. On older operating systems such as Windows
XP or Server 2003, it is an optional component. You will have to download and install PowerShell before using it.

The current version is 2.0, and the easiest way to find out whether you are using the most current PowerShell version is to launch the
console and check the copyright statement. If it reads “2006”, then you are still using the old and outdated PowerShell 1.0. If it reads
“2009”, you are using the correct version. There is no reason why you should continue to use PowerShell 1.0, so if you find it on your
system, update to 2.0 as soon as possible. If you wanted to find out your current PowerShell version programmatically, output the
automatic variable $psversiontable (simply by entering it). It not only tells you the current PowerShell version but also the versions of
the core dependencies. This variable was introduced in PowerShell version 2.0, so on version 1.0 it does not exist.

The PowerShell console resembles the interactive part of PowerShell where you can enter commands and immediately get back
results. The console relies heavily on text input. There are plenty of special keys listed in Table 1.1.

$result = Ping 10.10.10.10

 $result

 Reply from 10.10.10.10: bytes=32 time<1ms TTL=128

 Reply from 10.10.10.10: bytes=32 time<1ms TTL=128

 Reply from 10.10.10.10: bytes=32 time<1ms TTL=128

 Reply from 10.10.10.10: bytes=32 time<1ms TTL=128

 Ping statistics for 10.10.10.10:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

 Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Summary

KEY MEANING

(Alt)+(F7) Deletes the current command history

(PgUp), (PgDn) Display the first (PgUp) or last (PgDn) command you used in current session

(Enter) Send the entered lines to PowerShell for execution

(End) Moves the editing cursor to the end of the command line

(Del) Deletes the character to the right of the insertion point

(Esc) Deletes current command line

(F2) Moves in current command line to the next character corresponding to specified character

(F4) Deletes all characters to the right of the insertion point up to specified character

(F7) Displays last entered commands in a dialog box

(F8) Displays commands from command history beginning with the character that you already
entered in the command line

17

KEY MEANING

(F9) Opens a dialog box in which you can enter the number of a command from your command
history to return the command. (F7) displays numbers of commands in command history

(Left arrow),
(Right arrow)

Move one character to the left or right respectively

(Arrow up), (Arrow
down), (F5), (F8)

Repeat the last previously entered command

(Home) Moves editing cursor to beginning of command line

(Backspace) Deletes character to the left of the insertion point

(Ctrl)+(C) Cancels command execution

(Ctrl)+(End) Deletes all characters from current position to end of command line

(Ctrl)+(Arrow left),
(Ctrl)+(Arrow right)

Move insertion point one word to the left or right respectively

(Ctrl)+(Home) Deletes all characters of current position up to beginning of command line

Table 1.1: Important keys and their meaning in the PowerShell console

You will find that the keys (Arrow up), which repeats the last command, and (Tab), which completes the current entry, are
particularly useful. By hitting (Enter), you complete an entry and send it to PowerShell. If PowerShell can’t understand a command,
an error message appears highlighted in red stating the possible reasons for the error. Two special commands are cls (deletes the
contents of the console) and exit (ends PowerShell).

You can use your mouse to select information in the console and copy it to the Clipboard by pressing (Enter) or by right-clicking
when you have the QuickEdit mode turned on. With QuickEdit mode turned off, you will have to right-click inside the console and then
select Mark in a context menu.

The basic settings of the console—QuickEdit mode as well as colors, fonts, and font sizes—can be customized in the properties
window of the console. This can be accessed by right-clicking the icon to the far left in the title bar of the console window. In the dialog
box, select Properties.

Along with the commands, a number of characters in the console have special meanings and you have already become acquainted
with three of them:

Piping: The vertical bar “|” symbol pipes the results of a command to the next. When you pipe the results to the command more, the
screen output will be paused once the screen is full, and continued when you press a key.

Redirection: The symbol “>” redirects the results of a command to a file. You can then open and view the file contents. The
symbol “>>” appends information to an existing file.

PowerShell 2.0 also comes with a simple script editing tool called “ISE” (Integrated Script Environment). You find it in PowerShell’s
jump list (if you are using Windows 7), and you can also launch it directly from PowerShell by entering ise ENTER. ISE requires
.NET Framework 3.5.1. On Windows Server 2008 R2, it is an optional feature that needs to be enabled first in your system control
panel. You can do that from PowerShell as well:

Import-Module ServerManager Add-WindowsFeature ISE -IncludeAll

18

PowerShell has two faces: interactivity
and script automation. In this chapter,
you will first learn how to work with
PowerShell interactively. Then, we will
take a look at PowerShell scripts.

Chapter 2.
Interactive PowerShell

· PowerShell as a Calculator
 · Calculating with Number Systems and Units
· Executing External Commands
 · Starting the “Classic” Console
 · Discovering Useful Console Commands
 · Security Restrictions
 · Special Places
 · Cmdlets: PowerShell Commands
 · Using Parameters
 · Using Named Parameters
 · Switch Parameter
 · Positional Parameters
 · Common Parameters
 · Aliases: Shortcuts for Commands
 · Resolving Aliases
 · Creating Your Own Aliases
 · Removing or Permanently Keeping an Alias
 · Overwriting and Deleting Aliases
· Functions: PowerShell-”Macros”
 · Calling Commands with Arguments
· Functions: PowerShell-”Macros”
 · Starting Scripts
 · Overwriting and Deleting Aliases
· Running Batch Files
· Running VBScript Files
· Running PowerShell Scripts
· Summary

Topics Covered:

PowerShell as
a Calculator
You can use the PowerShell console to execute arithmetic operations the same way you use a calculator. Just enter a math
expression and PowerShell will give you the result:

You can use all of the usual basic arithmetic operations. Even parentheses will work the same as when you use your pocket
calculator:

2+4 (Enter)

 6

(12+5) * 3 / 4.5 (Enter)

 11.33333333333333

Parentheses play a special role in PowerShell. They always work from the inside out: the results inside the parentheses are
produced before evaluating the expressions outside of the parentheses, i.e. (2*2)*2 = 4*2. For example, operations performed
within parentheses have priority and ensure that multiplication operations do not take precedence over addition operations.
As you’ll discover in upcoming chapters, parentheses are also important when using PowerShell commands. For example,
you can list the contents of sub-directories with the dir command and then determine the number of files in a folder by
enclosing the dir command in parentheses.

(Dir $env:windir*.exe).Count (Enter)

	 12

In addition, there are two very similar constructions: @() and $().

@() will also execute the code inside the brackets but return the result always as an array. The previous line would have not
returned the number of items if the folder contained only one or none file. This line will always count folder content reliably:

@(Dir $env:windir*.exe -ErrorAction SilentlyContinue).Count (Enter)

	 12

 Pro Tip

20

4,3 + 2 (Enter)

 4
 3
 2

4GB / 720MB (Enter)

 5.68888888888889

1 mb (Enter)

 1048576

Note that PowerShell always uses the decimal point for numbers. Some cultures use other characters in numbers, such as
a comma. PowerShell does not care. It always uses the decimal point. Using a comma instead of a decimal point will return
something entirely different:

The comma always creates an array. So in this example, PowerShell created an array with the elements 4 and 3. It then adds the
number 2 to that array, resulting in an array of three numbers. The array content is then dumped by PowerShell into the console.
So the important thing to take with you is that the decimal point is always a point and not a comma in PowerShell.

The example above calculates how many CD-ROMs can be stored on a DVD. PowerShell will support the common unit’s kilobyte
(KB), megabyte (MB), gigabyte (GB), terabyte (TB), and petabyte (PT). Just make sure you do not use a space between a number
and a unit.

The next arithmetic problem is a little unusual.

Take a look at the following command line:

Calculating with Number
Systems and Units

These units can be in upper or lower case – PowerShell does not care. However, whitespace characters do matter because
they are always token delimiters. The units must directly follow the number and must not be separated from it by a space.
Otherwise, PowerShell will interpret the unit as a new command and will get confused because there is no such command.

 Important

12 + 0xAF (Enter)

 187

21

12 + 0xAF (Enter)

 45054

PowerShell can easily understand hexadecimal values: simply prefix the number with “0x”:

Here is a quick summary:

The example above calculates how many CD-ROMs can be stored on a DVD. PowerShell will support the common unit’s kilobyte
(KB), megabyte (MB), gigabyte (GB), terabyte (TB), and petabyte (PT). Just make sure you do not use a space between a number
and a unit.

Operators: Arithmetic problems can be solved with the help of operators. Operators evaluate the two values to the left and the
right. For basic operations, a total of five operators are available, which are also called “arithmetic operators” (Table2.1).

Brackets: Brackets group statements and ensure that expressions in parentheses are evaluated first.

Decimal point: Fractions use a point as a decimal separator (never a comma).

Comma: Commas create arrays and are irrelevant for normal arithmetic operations.

Special conversions: Hexadecimal numbers are designated by the prefix “0x”, which ensures that they are automatically
converted into decimal values. If you add one of the KB, MB, GB, TB, or PB units to a number, the number will be multiplied by the
unit. Whitespace characters aren’t allowed between numbers and values.

Results and formats: Numeric results are always returned as decimal values. You can use a format operator like -f if you’d like to
see the results presented in a different way. This will be discussed in detail later in this book.

Operator Description Example Result

+ Adds two values 5 + 4.5 9.5

2gb + 120mb 2273312768

0x100 + 5 261

“Hello “ + “there”	“ “Hello there”

- Subtracts two
values

5 - 4.5 0.5

12gb - 4.5gb 8053063680

200 - 0xAB 29

* Multiplies two
values

5 * 4.5 22.5

4mb * 3 12582912

12 * 0xC0 2304

“x” * 5 “xxxxx”

/ Divides two
values

5 / 4.5 1.1111111111

1mb / 30kb 34.133333333

0xFFAB / 0xC 5454,25

% Supplies the rest
of division	

5%4.5 0.5

Table 2.1: Arithmetic operators

22

Executing External
Commands
PowerShell can also launch external programs in very much the same way as the classic console. For example, if you want to
examine the settings of your network card, you can enter the command ipconfig—it works in PowerShell the same way it does in the
traditional console:

Ipconfig

Windows IP Configuration

Wireless LAN adapter Wireless Network Connection:

Connection-specific DNS Suffix:

Connection location IPv6 Address . : fe80::6093:8889:257e:8d1%8

IPv4 address : 192.168.1.35

Subnet Mask : 255.255.255.0

Standard Gateway : 192.168.1.1

Connection-specific DNS Suffix:

Connection location IPv6 Address . : fe80::6093:8889:257e:8d1%8

Tracert powershell.com

Trace route to powershell.com [74.208.54.218] over a maximum of 30 hops:

1 12 ms 7 ms 11 ms TobiasWeltner-PC [192.168.1.1]

2 15 ms 16 ms 16 ms dslb-088-070-064-001.pools.arcor-ip.net [88.70.64.1]

3 15 ms 16 ms 16 ms han-145-254-11-105.arcor-ip.net [145.254.11.105]

(...)

17 150 ms 151 ms 152 ms vl-987.gw-ps2.slr.lxa.oneandone.net [74.208.1.134]

18 145 ms 145 ms 149 ms ratdog.info [74.208.54.218]

This following command enables you to verify if a Web site is online and tells you the route the data packets are sent between a Web
server and your computer:

You can execute any Windows programs. Just type notepad (Enter) or explorer (Enter).

However, there’s a difference between text-based commands like ipconfig and Windows programs like Notepad. Text-based
commands are executed synchronously, and the console waits for the commands to complete. Windows-based programs
are executed asynchronously. Press (Ctrl)+(C) to cancel a text-based command.

Note that you can use the cmdlet Start-Process with all of its parameters when you want to launch an external program with
special options. With Start-Process, you can launch external programs using different credentials; you can make PowerShell
wait for Windows-based programs or control window size.

Type cls (Enter) to clear the console screen.

23

To temporarily switch back to the “classic” console, simply enter cmd (Enter).). Since the old console is just another text-based
command, you can easily launch it from within PowerShell. To leave the old console, you can type exit (Enter). Even PowerShell
can be closed by entering exit. Most text-based commands use exit to quit. Occasionally, the command quit is required in
commands instead of exit.

The cmd command can be used for just one command when you specify the parameter /c. This is useful for invoking an old console
command like help. This command has no external program that you can access directly from PowerShell. It’s only available inside
the classic console. Using this command will return a list of many other useful external console commands:

Starting the “Classic” Console

Discovering Useful Console Commands

Cmd /c Help

For more information on a specific command, type HELP command-name

ASSOC Displays or modifies file extension associations.

AT Schedules commands and programs to run on a computer.

ATTRIB Displays or changes file attributes.

BREAK Sets or clears extended CTRL+C checking.

CACLS Displays or modifies access control lists (ACLs) of files.

CALL Calls one batch program from another.

CD Displays the name of or changes the current directory.

CHCP Displays or sets the active code page number.

CHDIR Displays the name of or changes the current directory.

CHKDSK Checks a disk and displays a status report.

CHKNTFS Displays or modifies the checking of disk at boot time.

CLS Clears the screen.

CMD Starts a new instance of the Windows command interpreter.

COLOR Sets the default console foreground and background colors.

COMP Compares the contents of two files or sets of files.

COMPACT Displays or alters the compression of files on NTFS partitions.

CONVERT Converts FAT volumes to NTFS. You cannot convert the current drive.

COPY Copies one or more files to another location.

DATE Displays or sets the date.

DEL Deletes one or more files.

DIR Displays a list of files and subdirectories in a directory.

DISKCOMP Compares the contents of two floppy disks.

DISKCOPY Copies the contents of one floppy disk to another.

DOSKEY Edits command lines, recalls Windows commands, and creates macros.

ECHO Displays messages, or turns command echoing on or off.

ENDLOCAL Ends localization of environment changes in a batch file.

ERASE Deletes one or more files.

EXIT Quits the CMD.EXE program (command interpreter).

FC Compares two files or sets of files, and displays the differences between them.

FIND Searches for a text string in a file or files.

FINDSTR Searches for strings in files.

FOR Runs a specified command for each file in a set of files.

24

FORMAT Formats a disk for use with Windows.

FTYPE Displays or modifies file types used in file extension associations.

GOTO Directs the Windows command interpreter to a labeled line in a batch program.

GRAFTABL Enables Windows to display an extended character set in graphics mode.

HELP Provides Help information for Windows commands.

IF Performs conditional processing in batch programs.

LABEL Creates, changes, or deletes the volume label of a disk.

MD Creates a directory.

MKDIR Creates a directory.

MODE Configures a system device.

MORE Displays output one screen at a time.

MOVE Moves one or more files from one directory to another directory.

PATH Displays or sets a search path for executable files.

PAUSE Suspends processing of a batch file and displays a message.

POPD Restores the previous value of the current directory saved by PUSHD.

PRINT Prints a text file.

PROMPT Changes the Windows command prompt.

PUSHD Saves the current directory then changes it.

RD Removes a directory.

RECOVER Recovers readable information from a bad or defective disk.

REM Records comments (remarks) in batch files or CONFIG.SYS.

REN Renames a file or files.

RENAME Renames a file or files.

REPLACE Replaces files.

RMDIR Removes a directory.

SET Displays, sets, or removes Windows environment variables.

SETLOCAL Begins localization of environment changes in a batch file.

SHIFT Shifts the position of replaceable parameters in batch files.

SORT Sorts input.

START Starts a separate window to run a specified program or command.

SUBST Associates a path with a drive letter.

TIME Displays or sets the system time.

TITLE Sets the window title for a CMD.EXE session.

TREE Graphically displays the directory structure of a drive or path.

TYPE Displays the contents of a text file.

VER Displays the Windows version.

VERIFY Tells Windows whether to verify that your files are written correctly to a disk.

VOL Displays a disk volume label and serial number.

XCOPY Copies files and directory trees.

You can use all of the above commands in your PowerShell console. To try this, pick some commands from the list. For example:

Cmd /c help vol

25

As an added safety net, you can run PowerShell without administrator privileges when
experimenting with new commands. That will protect you against mistakes as most
dangerous commands can no longer be executed without administrator rights:

Remember to start your PowerShell explicitly with administrator rights if you must
use admin privileges and have enabled User Account Control.. To do this, right-click
PowerShell.exe and in the context menu, select Run as Administrator.

*(Run without administrator privileges whenever possible)

defrag c:

You must have Administrator privileges to defragment a volume.
Use an administrator command line and then run the program again.

Figure 2.1: Run PowerShell as administrator

Important

While you can launch notepad, you cannot launch wordpad:

Discovering Useful Console Commands

wordpad

The term “wordpad” is not recognized as a cmdlet, function,
operable program or script file. Verify the term and try again.
At line:1 char:7
+ wordpad <<<<

C:\programs\Windows NT\accessories\wordpad.exe

The term “ C:\program” is not recognized as a cmdlet,
function, operable program or script file. Verify the
term and try again.
At line:1 char:21
+ C:\programs\Windows <<<< NT\accessories\wordpad.exe

Here, PowerShell simply did not know where to find WordPad, so if the program is not located in one of the standard system folders,
you can specify the complete path name like this:

26

Since the path name includes whitespace characters and because PowerShell interprets them as separators, PowerShell is actually
trying to start the program C:\program. So if path names include spaces, quote it. But that can cause another problem:

PowerShell now treats quoted information as string and immediately outputs it back to you. You can prefix it with an ampersand to
ensure that PowerShell executes the quoted text:

Finally, WordPad starts.

Wouldn’t it be easier to switch from the current folder to the folder with the program we’re looking, and then launch the program right
there?

“C:\programs\Windows NT\accessories\wordpad.exe”

 C:\programs\Windows NT\accessories\wordpad.exe

& “C:\programs\Windows NT\accessories\wordpad.exe”

Cd “C:\programs\Windows NT\accessories”

wordpad.exe

The term “wordpad” is not recognized as a cmdlet,
function, operable program or script file.
Verify the term and try again.
At line:1 char:11
+ wordpad.exe <<<< + wordpad <<<<

This results in another red exception because PowerShell wants a relative or absolute path. So, if you don’t want to use absolute
paths like in the example above, you need to specify the relative path where “.” represents the current folder:

.\wordpad.exe

You won’t need to provide the path name or append the file extension to the command name if the program is located in a folder that
is listed in the PATH environment variable. That’s why common programs, such as regedit, notepad, powershell,or ipconfig work as-is
and do not require you to type in the complete path name or a relative path.

Special Places

27

You can put all your important programs in one of the folders listed in the environment variable Path. You can find this list by entering:

As a clever alternative, you can add other folders containing important programs to your Path environment variables, such as:

After this change, you can launch WordPad just by entering its program name. Note that your change to the environment variable Path
is valid only in the current PowerShell session. If you’d like to permanently extend Path, you will need to update the path environment
variable in one of your profile scripts. Profile scripts start automatically when PowerShell starts and customize your PowerShell
environment. Read more about profile scripts in Chapter 10.

Watch out for whitespace characters: If whitespace characters occur in path names, you can enclose the entire path in quotes so
that PowerShell doesn’t interpret whitespace characters as separators. Stick to single quotes because PowerShell “resolves” text in
double quotation marks, replacing variables with their values, and unless that is what you want you can avoid it by using single quotes
by default.
Specifying a path: You must tell the console where it is if the program is located somewhere else. To do so, specify the absolute or
relative path name of the program.
The “&” changes string into commands: PowerShell doesn’t treat text in quotes as a command. Prefix a string with “&” to actually
execute it. The “&” symbol will allow you to execute any string just as if you had entered the text directly on the command line.

$env:Path

 C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\program

 Files\Softex\OmniPass;C:\Windows\System32\WindowsPowerShell\v1.0\;c

 :\program Files\Microsoft SQL Server\90\Tools\binn\;C:\program File

 s\ATI Technologies\ATI.ACE\Core-Static;C:\program Files\MakeMsi\;C:

 \program Files\QuickTime\QTSystem\

$env:path += “;C:\programs\Windows NT\accessories”
wordpad.exe

& (“note” + “pad”)

You’ll find more on variables, as well as special environment variables, in the next chapter.

Important

If you have to enter a very long path names, remember (Tab), the key for automatic completion:

C:\(Tab)

Press (Tab) again and again until the suggested sub-directory is the one you are looking for. Add a “\” and press (Tab)
once again to specify the next sub-directory.

The moment a whitespace character turns up in a path, the tab-completion quotes the path and inserts an “&” before it.

Tip

28

Cmdlets: PowerShell
Commands
PowerShell’s internal commands are called cmdlets. The mother of all cmdlets is called Get-Command:

Get-Command -commandType cmdlet

It retrieves a list of all available cmdlets, whose names always consist of an action (verb) and something that is acted on (noun). This
naming convention will help you to find the right command. Let’s take a look at how the system works.

Get-Command -verb get

CommandType Name Definition

----------- ---- ----------

Cmdlet Get-Acl Get-Acl [[-Path] <String[]>]...

Cmdlet Get-Alias Get-Alias [[-Name] <String[]...

Cmdlet Get-AuthenticodeSignature Get-AuthenticodeSignature [-...

Cmdlet Get-ChildItem Get-ChildItem [[-Path] <Stri...

Cmdlet Get-Command Get-Command [[-ArgumentList]...

Cmdlet Get-ComputerRestorePoint Get-ComputerRestorePoint [[-...

Cmdlet Get-Content Get-Content [-Path] <String[...

Cmdlet Get-Counter Get-Counter [[-Counter] <Str...

Cmdlet Get-Credential Get-Credential [-Credential]...

Cmdlet Get-Culture Get-Culture [-Verbose] [-Deb...

Cmdlet Get-Date Get-Date [[-Date] <DateTime>...

Cmdlet Get-Event Get-Event [[-SourceIdentifie...

Cmdlet Get-EventLog Get-EventLog [-LogName] <Str...

Cmdlet Get-EventSubscriber Get-EventSubscriber [[-Sourc...

Cmdlet Get-ExecutionPolicy Get-ExecutionPolicy [[-Scope...

Cmdlet Get-FormatData Get-FormatData [[-TypeName] ...

Cmdlet Get-Help Get-Help [[-Name] <String>] ...

Cmdlet Get-History Get-History [[-Id] <Int64[]>...

Cmdlet Get-Host Get-Host [-Verbose] [-Debug]...

Cmdlet Get-HotFix Get-HotFix [[-Id] <String[]>...

Cmdlet Get-Item Get-Item [-Path] <String[]> ...

Cmdlet Get-ItemProperty Get-ItemProperty [-Path] <St...

Cmdlet Get-Job Get-Job [[-Id] <Int32[]>] [-...

Cmdlet Get-Location Get-Location [-PSProvider <S...

Cmdlet Get-Member Get-Member [[-Name] <String[...

Cmdlet Get-Module Get-Module [[-Name] <String[...

Cmdlet Get-PfxCertificate Get-PfxCertificate [-FilePat...

Cmdlet Get-Process Get-Process [[-Name] <String...

Cmdlet Get-PSBreakpoint Get-PSBreakpoint [[-Script] ...

Cmdlet Get-PSCallStack Get-PSCallStack [-Verbose] [...

Cmdlet Get-PSDrive Get-PSDrive [[-Name] <String...

29

Cmdlet Get-PSProvider Get-PSProvider [[-PSProvider...

Cmdlet Get-PSSession Get-PSSession [[-ComputerNam...

Cmdlet Get-PSSessionConfiguration Get-PSSessionConfiguration [...

Cmdlet Get-PSSnapin Get-PSSnapin [[-Name] <Strin...

Cmdlet Get-Random Get-Random [[-Maximum] <Obje...

Cmdlet Get-Service Get-Service [[-Name] <String...

Cmdlet Get-TraceSource Get-TraceSource [[-Name] <St...

Cmdlet Get-Transaction Get-Transaction [-Verbose] [...

Cmdlet Get-UICulture Get-UICulture [-Verbose] [-D...

Cmdlet Get-Unique Get-Unique [-InputObject <PS...

Cmdlet Get-Variable Get-Variable [[-Name] <Strin...

Function Get-Verb ...

Cmdlet Get-WinEvent Get-WinEvent [[-LogName] <St...

Cmdlet Get-WmiObject Get-WmiObject [-Class] <Stri...

Cmdlet Get-WSManCredSSP Get-WSManCredSSP [-Verbose] ...

Cmdlet Get-WSManInstance Get-WSManInstance [-Resource...

There is an approved list of verbs that are used with cmdlet names. You can list it with Get-Verb.

You can also look up help for any cmdlet using Get-Help:

Get-Help Get-Command -detailed

You can easily discover cmdlets because Get-Command allows wildcards:

Get-Command *service* -CommandType cmdlet

CommandType Name Definition

----------- ---- ----------

Cmdlet Get-Service Get-Service [[-Name] <String...

Cmdlet New-Service New-Service [-Name] <String>...

Cmdlet New-WebServiceProxy New-WebServiceProxy [-Uri] <...

Cmdlet Restart-Service Restart-Service [-Name] <Str...

Cmdlet Resume-Service Resume-Service [-Name] <Stri...

Cmdlet Set-Service Set-Service [-Name] <String>...

Cmdlet Start-Service Start-Service [-Name] <Strin...

Cmdlet Stop-Service Stop-Service [-Name] <String...

Cmdlet Suspend-Service Suspend-Service [-Name] <Str...

Parameters add information so a cmdlet knows what to do. Once again, Get-Help will show you which parameters are supported by
any given cmdlet. For example, the cmdlet Get-ChildItem lists the contents of the current sub-directory. The contents of the current
folder will be listed if you enter the cmdlet without additional parameters:

Using Parameters

30

This will give you comprehensive information as well as several examples. Of particular interest is the “Parameters” section that you
can also retrieve specifically for one or all parameters:

For example, if you’d prefer to get a list of the contents of another sub-directory, you can enter the sub-directory name after the
cmdlet:

You can use Get-Help to output full help on Get-ChildItem to find out which parameters are supported:

Get-ChildItem

Get-ChildItem c:\windows

Get-Help Get-ChildItem -Full

Get-Help Get-ChildItem -Parameter *

-Exclude <string[]>

Omits the specified items. The value of this parameter qualifies the Path parameter. Enter a path element or pattern, such as “*.txt”.
Wildcards are permitted.

Required? false

Position? named

Default value

Accept pipeline input false

Accept wildcard characters? false

-Filter <string[]>

Specifies a filter in the provider’s format or language. The value of this parameter qualifies the Path parameter. The syntax of the
filter, including the use of wildcards, depends on the provider. Filters are more efficient than other parameters, because the provider
applies them when retrieving the objects, rather than having Windows PowerShell filter the objects after they are retrieved.

Required? false

Position? 2

Default value

Accept pipeline input false

Accept wildcard characters? false

31

-Force <string[]>

Allows the cmdlet to get items that cannot otherwise not be accessed by the user, such as hidden or system files. Implementation
varies from provider to provider. For more information, see about_Providers. Even using the Force parameter, the cmdlet cannot
override security restrictions.

Required? false

Position? named

Default value

Accept pipeline input false

Accept wildcard characters? false

-Include <string[]>

Retrieves only the specified items. The value of this parameter qualifies the Path parameter. Enter a path element or pattern, such
as “*.txt”. Wildcards are permitted.

The Include parameter is effective only when the command includes the Recurse parameter or the path leads to the contents of a
directory, such as C:\Windows*, where the wildcard character specifies the contents of the C:\Windows directory.

Required? false

Position? named

Default value

Accept pipeline input false

Accept wildcard characters? false

-LiteralPath <string[]>

Specifies a path to one or more locations. Unlike Path, the value of LiteralPath is used exactly as it is typed. No characters are
interpreted as wildcards. If the path includes escape characters, enclose it in single quotation marks. Single quotation marks tell
Windows PowerShell not to interpret any characters as escape sequences.

Required? true

Position? 1

Default value

Accept pipeline input true (ByPropertyName)

Accept wildcard characters? false

32

-Name <string[]>

Retrieves only the names of the items in the locations. If you pipe the output of this command to another command, only the item
names are sent.

Required? false

Position? 1

Default value

Accept pipeline input false

Accept wildcard characters? false

Named parameters really work like key-value pairs. You can specify the name of a parameter (which always starts with a hyphen),
then a space, then the value you want to assign to the parameter. Let’s say you’d like to list all files with the extension *.exe that are
located somewhere in the folder c:\windows or in one of its sub-directories. You can use this command:

There are clever tricks to make life easier. You don’t have to specify the complete parameter name as long as you type as much of
the parameter name to make it unambiguous:

Using Named
Parameters

Get-ChildItem -path c:\windows -filter *.exe -recurse -name

Get-ChildItem -pa c:\windows -fi *.exe -r -n

 Get-ChildItem : Parameter cannot be processed because
 the parameter name ‘f’ is ambiguous. Possible matches
 include: -Filter -Force.
 At line:1 char:14

Just play with it: If you shorten parameter names too much, PowerShell will report ambiguities and list the parameters that are con-
flicting:

Get-ChildItem -pa c:\windows -f *.exe -r -n

33

You can also turn off parameter recognition. This is necessary only rarely when the argument reads like a parameter
name

Write-Host -BackgroundColor

Write-Host : Missing an argument for parameter
‘BackgroundColor’. Specify a parameter of type
“System.consoleColor” and try again.
At line:1 char:27
+ Write-Host -BackgroundColor <<<<

You can always quote the text. Or you can expressly turn off parameter recognition by typing “--”. Everything follow-
ing these two symbols will no longer be recognized as a parameter:

Write-Host “-BackgroundColor”

-BackgroundColor

Write-Host -- -BackgroundColor

-BackgroundColor

Note

Sometimes, parameters really are no key-value pairs but simple yes/no-switches. If they’re specified, they turn on a certain func-
tionality. If they’re left out, they don’t turn on the function. For example, the parameter -recurse ensures that Get-ChildItem searches
not only the -path specified sub-directories, but all sub-directories. And the switch parameter -name makes Get-ChildItem output
only the names of files (as string rather than rich file and folder objects).

Switch Parameters

The help on Get-ChildItem will clearly identify switch parameters and place a “<SwitchParameter>” after the parameter name:

Get-Help Get-Childitem -parameter recurse

 -recurse <SwitchParameter>

 Gets the items in the specified locations and all child

 items of the locations.

 (...)

In all three cases, PowerShell will identify and eliminate the named arguments -recurse and -name first because they are clearly
specified. The remaining arguments are “unnamed” and need to be assigned based on their position:

Get-ChildItem c:\windows *.exe

34

The parameter -path has the position 1, and no value has yet been assigned to it. So, PowerShell attaches the first remaining
argument to this parameter.

-path <string[]>

Specifies a path to one or more locations. Wildcards are

permitted. The default location is the current directory (.).

Required? false

Position? 1

Standard value used <NOTE: if not specified uses

the Current location>

Accept pipeline input? true (ByValue, ByPropertyName)

Accept wildcard characters? true

The parameter -filter has the position 2. Consequently, it is assigned the second remaining argument. The position specification will
make it easier to use a cmdlet because you don’t have to specify any parameter names for the most frequently and commonly used
parameters.

Here is a tip: In daily interactive PowerShell scripting, you will want short and fast commands so use aliases, positional parameters,
and abbreviated parameter names. Once you write PowerShell scripts, you should not use these shortcuts. Instead, you can use the
true cmdlet names and stick to fully named parameters. One reason is that scripts can be portable and not depend on specific aliases
you may have defined. Second, scripts are more complex and need to be as readable and understandable as possible. Named pa-
rameters help other people better understand what you are doing.

Cmdlets also support a set of generic “CommonParameters”:

Common Parameters

<CommonParameters>

This cmdlet supports the common parameters: -Verbose,

-Debug, -ErrorAction, -ErrorVariable, and -OutVariable.

For more information, type “get-help about_commonparameters”.

These parameters are called “common” because they are permitted for (nearly) all cmdlets and behave the same way.

Common
Parameter

Type Description

-Verbose Switch Generates as much information as possible. Without this switch, the cmdlet restricts
itself to displaying only essential information

-Debug Switch Outputs additional warnings and error messages that help programmers find the causes
of errors. You can find more information in Chapter 11

35

Common
Parameter

Type Description

-ErrorAction Value Determines how the cmdlet responds when an error occurs. Permitted values:
NotifyContinue: Reports error and continues (default)
NotifyStop: Reports error and stops
SilentContinue: Displays no error message, continues
SilentStop: Displays no error message, stops
Inquire: Asks how to proceed
You can find more information in Chapter 11.

ErrorVariable Value Name of a variable in which in the event of an error information about the error is stored.
You can find more information in Chapter 11.

-OutVariable Value	 Name of a variable in which the result of a cmdlet is to be stored. This parameter is usu-
ally superfluous because you can directly assign the value to a variable. The difference
is that it will no longer be displayed in the console if you assign the result to a variable.
$result = Get-ChildItem
It will be output to the console and stored in a variable if you assign the result addition-
ally to a variable:
Get-ChildItem -OutVariable result

Table 2.3: Common parameters in effect for (nearly) all cmdlets

Aliases: Shortcuts for
Commands

Cmdlet names with their verb-noun convention are very systematic, yet not always practical. In every day admin life, you will want
short and familiar commands. This is why PowerShell has a built-in alias system as it comes with a lot of pre-defined aliases. This
is why in PowerShell, both Windows admins and UNIX admins, can list folder contents with commands they are accustom to using.
There are pre-defined “historic” aliases called “dir” and “ls” which both point to the PowerShell cmdlet Get-ChildItem.

Get-Command dir

CommandType Name Definition

----------- ---- ----------

Alias dir Get-ChildItem

Get-Alias -Definition Get-Childitem

CommandType Name Definition

----------- ---- ----------

Alias dir Get-ChildItem

Alias gci Get-ChildItem

Alias ls Get-ChildItem

Get-ChildItem c:\Dir c:\ls c:\

So, aliases have two important tasks in PowerShell:

· Historical: NFind and use important cmdlets by using familiar command names you know from older shells.
· Speed: Fast access to cmdlets using short alias names instead of longer formal cmdlet names.

36

Dir alias:

CommandType Name Definition

----------- ---- ----------

alias ac Add-Content

alias asnp Add-PSSnapin

alias clc Clear-Content

(...)

$alias:Dir

 Get-ChildItem

$alias:ls

 Get-ChildItem

Get-Command Dir

Get-Command Dir

CommandType Name Definition

----------- ---- ----------

Alias dir Get-ChildItem

$alias:Dir lists the element Dir of the drive alias:. That may seem somewhat surprising because there is no drive called alias: in the
classic console. PowerShell supports many additional virtual drives, and alias: is only one of them. If you want to know more, the
cmdlet Get-PSDrive lists them all. You can also list alias: like any other drive with Dir. The result would be a list of aliases in their
entirety:

Use these lines if you’d like to know what “genuine” command is hidden in an alias:

Resolving Aliases

Get-Command can also resolve aliases. Whenever you want to know more about a particular command, you can submit it to
Get-Command, and it will tell you the command type and where it is located.

You can also get the list of aliases using the cmdlet Get-Alias. You will receive a list of individual alias definitions:

Get-alias -name Dir

Get-ChildItem

This will get you all aliases pointing to the cmdlet or command you submitted to -Definition.

As it turns out, there’s even a third alias for Get-ChildItem called “gci”. There are more approaches to the same result. The next
examples find alias definitions by doing a keyword search and by grouping:

Dir alias: | Out-String -Stream | Select-String “Get-ChildItem”

37

Count Name Group

----- ---- -----

1 Add-Content {ac}

1 Add-PSSnapin {asnp}

1 Clear-Content {clc}

1 Clear-Item {cli}

1 Clear-ItemProperty {clp}

1 Clear-Variable {clv}

3 Copy-Item {cpi, cp, copy}

1 Copy-ItemProperty {cpp}

1 Convert-Path {cvpa}

1 Compare-Object {diff}

1 Export-Alias {epal}

1 Export-Csv {epcsv}

1 Format-Custom {fc}

1 Format-List {fl}

2 ForEach-Object {foreach, %}

1 Format-Table {ft}

1 Format-Wide {fw}

1 Get-Alias {gal}

3 Get-Content {gc, cat, type}

3 Get-ChildItem {gci, ls, Dir}

1 Get-Command {gcm}

1 Get-PSDrive {gdr}

3 Get-History {ghy, h, history}

1 Get-Item {gi}

2 Get-Location {gl, pwd}

1 Get-Member {gm}

1 Get-ItemProperty {gp}

2 Get-Process {gps, ps}

1 Group-Object {group}

1 Get-Service {gsv}

1 Get-PSSnapin {gsnp}

1 Get-Unique {gu}

1 Get-Variable {gv}

1 Get-WmiObject {gwmi}

1 Invoke-Expression {iex}

2 Invoke-History {ihy, r}

1 Invoke-Item {ii}

1 Import-Alias {ipal}

1 Import-Csv {ipcsv}

3 Move-Item {mi, mv, move}

1 Move-ItemProperty {mp}

1 New-Alias {nal}

2 New-PSDrive {ndr, mount}

1 New-Item {ni}

1 New-Variable {nv}

1 Out-Host {oh}

1 Remove-PSDrive {rdr}

6 Remove-Item {ri, rm, rmdir, del...}

2 Rename-Item {rni, ren}

1 Rename-ItemProperty {rnp}

38

1 Remove-ItemProperty {rp}

1 Remove-PSSnapin {rsnp}

1 Remove-Variable {rv}

1 Resolve-Path {rvpa}

1 Set-Alias {sal}

1 Start-Service {sasv}

1 Set-Content {sc}

1 Select-Object {select}

1 Set-Item {si}

3 Set-Location {sl, cd, chdir}

1 Start-Sleep {sleep}

1 Sort-Object {sort}

1 Set-ItemProperty {sp}

2 Stop-Process {spps, kill}

1 Stop-Service {spsv}

2 Set-Variable {sv, set}

1 Tee-Object {tee}

2 Where-Object {where, ?}

2 Write-Output {write, echo}

2 Clear-Host {clear, cls}

1 Out-Printer {lp}

1 Pop-Location {popd}

1 Push-Location {pushd}

To temporarily switch back to the “classic” console, simply enter cmd (Enter).). Since the old console is just another text-based
command, you can easily launch it from within PowerShell. To leave the old console, you can type exit (Enter). Even PowerShell
can be closed by entering exit. Most text-based commands use exit to quit. Occasionally, the command quit is required in
commands instead of exit.

Creating Your Own Aliases

Edit

Set-Alias edit notepad.exe

Edit

Edit typically launches the console-based Editor program. You can press (Alt)+(F) and then (X) to exit without completely closing
the console window.

If you create a new alias called “Edit” and set it to “notepad.exe”, the command Edit will be re-programmed. The next time you enter
it, PowerShell will no longer run the old Editor program, but the Notepad.

$alias:edit

39

Because you haven’t entered any file names after Export-Alias, the command will ask you what the name are under which you want to
save the list. Type in:

How do you remove aliases? You don’t. All new aliases are discarded as soon as you exit PowerShell. All of your own aliases will
be gone the next time you start PowerShell. “Built-in” aliases like “dir” and “cd” will still be there.

Try these options if you’d like to keep your own aliases permanently:

 · Manually each time: Set your aliases after every start manually using Set-Alias. That is, of course, rather theoretical.
 · Automated in a profile: Let your alias be set automatically when PowerShell starts: add your aliases to a start profile.
 You’ll learn how to do this in Chapter 10.
 · Import and export: You can use the built-in import and export function for aliases.

For example, if you’d like to export all currently defined aliases as a list to a file, enter:

Removing or Permanently
Keeping an Alias

Export-Alias

alias1 (Enter)

The list will be saved. You can look at the list afterwards and manipulate it. For example, you might want the list to include a few of
your own alias definitions:

Import-Alias will notify you that it cannot create some aliases of the list because these aliases already exist. Specify additionally the
option -Force to ensure that Import-Alias overwrites existing aliases:

You can import the list to activate the alias definitions:

Notepad alias1

Import-Alias alias1 -Force

 Import-Alias : Alias not allowed because an alias with the
 name “ac” already exists.
 At line:1 char:13
 + Import-Alias <<<< alias1 + Get-ChildItem <<<< -pa c:\windows

Import-Alias alias1

40

Important

You can add the Import-Alias instruction to your start profile and specify a permanent path to the alias list. This will make
PowerShell automatically read this alias list when it starts. Later, you can add new aliases. Then, it will suffice to update the
alias list with Export-Alias and to write over the old file. This is one way for you to keep your aliases permanently.

Del alias: edit

Del C:\garbage.txt

You can overwrite aliases with new definitions any time as long as an alias is not write-protected. Just redefine the alias with the
cmdlet Set-Alias. Use this command if you’d like to remove an alias completely and don’t want to wait until you end PowerShell:

This instruction deletes the “Edit” alias. Here, the uniform provider approach becomes evident. The very same “Del” command will
allow you to delete files and sub-directories in the file system as well. Perhaps you’re already familiar with the command from the
classic console:

Overwriting and Deleting Aliases

Here is an example that finds all aliases that point to no valid target, which is a great way of finding outdated or damaged
aliases:

Get-Alias | ForEach-Object {

if (!(Get-Command $_.Definition -ea SilentlyContinue)) {$_}}

Pro Tip

Aliases are simple shortcuts to call commands with another name (shortcut names), or to make the transition to PowerShell easier
(historic aliases). However, the arguments of a command can never be included in an alias. You will need to use functions if you
want that.

Functions:
PoweShell-”Macros”

41

If you find yourself using the command ping frequently to verify network addresses, you may want to make this easier by creating
a shortcut that not only calls ping.exe, but also appends standard arguments to it. Let’s see how you can automate this call:

Aliases won’t work here because they can’t specify command arguments. Functions can:

Calling Commands with Arguments

Ping -n 1 -w 100 10.10.10.10

function quickping { ping -n 1 -w 100 $args }

quickping 10.10.10.10

Pinging 10.10.10.10 with 32 bytes of data:

Reply from 10.10.10.10: bytes=32 time<1ms TTL=128

Ping statistics for 10.10.10.10:

Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

Set-Alias qp quickping

qp 10.10.10.10

Pinging 10.10.10.10 with 32 bytes of data:

Reply from 10.10.10.10: bytes=32 time<1ms TTL=128

Ping statistics for 10.10.10.10:

Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

Unlike alias definitions, functions can run arbitrary code that is placed in brackets. Any additional information a user submitted to
the function can be found in $args if you don’t specify explicit parameters. $args is an array and holds every piece of extra infor-
mation submitted by the caller as separate array elements. You’ll read more about functions later.

To run files (like documents or scripts), PowerShell uses the same rules that apply to executables: either, you specify an absolute
or relative path, or the file needs to be located in one of the special trustworthy folders defined in the Path environment variable.

Invoking Files
and Scripts

42

Save information on all running processes to HTML file

(lasts several seconds):

Get-Process | ConvertTo-Html | Out-File test.htm

File cannot be opened directly:

test.htm

The term “test.htm” is not recognized as a cmdlet, function,
operable program, or script file. Verify the term and try again.
At line:1 char:8
+ test.htm <<<<

Specify a relative or absolute path name:

.\test.htm

Scripts and batch files are pseudo-executables. The script itself is just a plain text file, but it can be run by its associated script
interpreter.

Starting Scripts

Batch files are text files with the extension “.bat”. They may include all the commands allowed in a classic cmd.exe console. When
a batch file is opened, the classic console immediately starts to execute the commands it contains. Let’s check it out. First, create
this test file:

Now enter this text:

Running Batch Files

Notepad ping.bat

@echo off

echo An attacker can do dangerous things here

pause

Dir %windir%

pause

Dir %windir%\system

The batch file won’t run. Because it has the same name and you didn’t specify any IP address or Web site address, the ping
command spits out its internal help message. If you want to launch your batch file, you’re going to have to specify either the
relative or absolute path name.

Save the text and close Notepad. Your batch file is ready for action. Try to launch the batch file by entering its name:

Ping

.\ping

43

Your batch file will open and then immediately runs the commands it contains.

PowerShell has just defended a common attack. If you were using the classic console, you would have been tricked by the
attacker. Switch over to the classic console to see for yourself:

If an attacker had smuggled a batch file named “ping.bat” into your current folder, then the ping command, harmless though it
might seem, could have had catastrophic consequences. A classic console doesn’t distinguish between files and commands.
It will look first in the current folder, find the batch file, and execute it immediately. Such a mix-up will never happen in the
PowerShell console. So, return to your much-safer PowerShell environment:

Exit

Cmd

Ping 10.10.10.10

An attacker can do dangerous things here

Press any key . . .

VBScript is another popular automation language as its scripts are tagged with the file extension “.vbs”. What we have just
discussed about batch files also applies to these scripts:

Next, run the script:

Enter this VBScript code in Notepad and save it as test.vbs:	

Running VBScript Files

Notepad test.vbs

Cscript.exec:\samples\test.vbs (Enter)

result = InputBox(“Enter your name”)

WScript.Echo result

The script opens a small dialog window and asks for some information. The information entered into the dialog is then
output to the console where PowerShell can receive it. This way, you can easily merge VBScript logic into your PowerShell
solutions. You can even store the results into a variable and process it inside PowerShell:

$name = cscript.exe c:\samples\test.vbs

“Your name is $name”

Important

44

Important

If you do not get back the name you entered into the dialog, but instead the VBScript copyright information, then the
VBScript interpreter has output the copyright information first, which got in the way. The safest way is to turn off the
copyright message explicitly:

$name = cscript.exe //NOLOGO c:\samples\test.vbs

You can also generally turn off VBScript logos. Try calling wscript.exe to open the settings dialog, and turn off the logo.

PowerShell has its own script files with the file extension “.ps1”. While you will learn much more about PowerShell scripts in
Chapter 10, you already know enough to write your first script. Use the Windows editor to create and open your first script:

Running PowerShell Scripts

Notepad $env:temp\test.ps1

You can now enter any PowerShell code you want, and save the file. Once saved, you can also open your script with more
sophisticated and specialized script editors. PowerShell comes with an editor called PowerShell ISE, and here is how you’d open
the file you created with Notepad:

Try to run your script after you’ve created it:

Ise $env:temp\test.ps1

You’ll probably receive an error message similar to the one in the above example. All PowerShell scripts are initially disabled. You
need to allow PowerShell to execute scripts first. This only needs to be done once:

Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

.\test.ps1

 File “C:\Users\UserA\test.ps1” cannot be loaded because the
 execution of scripts is disabled on this system. Please see
 “get-help about_signing” for more details.
 At line:1 char:10
 + .\test.ps1 <<<<

This grants permission to run locally stored PowerShell scripts. Scripts from untrusted sources, such as the Internet, will need to
carry a valid digital signature or else they won’t run. This is to protect you from malicious scripts, but if you want to, you can turn this
security feature off. Replace RemoteSigned with Bypass. The implications of signatures and other security settings will be discussed
in Chapter 10. For now, the line above is enough for you to experiment with your own PowerShell scripts. To restore the original
setting, set the setting to Undefined:

45

To get a complete picture, also try using the -List parameter with Get-ExecutionPolicy:

You now see all execution policies. The first two are defined by Group Policy so a corporation can centrally control execution
policy. The scope “Process” refers to your current session only. So, you can use this scope if you want to only temporarily change
the execution policy. No other PowerShell session will be affected by your change. “CurrentUser” will affect only you, but no
other users. That’s how you can change this scope without special privileges. “LocalMachine,” which is the only scope available
in PowerShell v.1, will affect any user on your machine. This is the perfect place for companies to set initial defaults that can be
overridden. The default setting for this scope is “Restricted.”

Set-ExecutionPolicy Undefined -Scope CurrentUser

Get-ExecutionPolicy -List

Scope ExecutionPolicy

----- ---------------

MachinePolicy Undefined

UserPolicy Undefined

Process Undefined

CurrentUser RemoteSigned

LocalMachine Restricted

The effective execution policy is the first policy from top to bottom in this list that is not set to “Undefined.” If all policies are set to
“Undefined,” then scripts are prohibited.

Note: To turn off signature checking altogether, you can set the execution policy to “Bypass.” This can be useful if you must run
scripts regularly that are stored on file servers outside your domain. Otherwise, you may get security warnings and confirmation
dialogs. Always remember: execution policy exists to help and protect you from potentially malicious scripts. If you are confident
you can safely identify malicious scripts, then nothing is wrong by turning off signature checking. However, we recommend not
using the “Bypass” setting if you are new to PowerShell.

The PowerShell console can run all kinds of commands interactively. You simply enter a command and the console will return the
results.

Cmdlets are PowerShell’s own internal commands. A cmdlet name is always composed of a verb (what it does) and a noun
(where it acts upon).

To find a particular command, you can either guess or use Get-Command. For example, this will get you a list if you wanted to
find all cmdlets dealing with event logs:

Invoking Files
and Scripts

Get-Command -Noun EventLog

46

Search for the verb “Stop” to find all cmdlets that stop something:

You can also use wildcards. This will list all cmdlets with the keyword “computer”:

Once you know the name of a particular cmdlet, you can use Get-Help to get more information. This function will help you view
help information page by page:

Cmdlets are just one of six command types you can use to get work done:

 · Alias: Shortcuts to other commands, such as dir or ls
 · Function: “Macros” that run code and resemble “self-made” new commands

Get-Command -Verb Stop

Get-Command *computer* -commandType cmdlet

Get-Help Stop-Computer

Help Stop-Computer -examples

Help Stop-Computer -parameter *

 · Cmdlet: Built-in PowerShell commands
 · Application: External executables, such as ipconfig, ping or notepad
 · PowerShell scripts: Files with extension *.ps1 which can contain any valid PowerShell code
 · Other files: Batch files, VBScript script files, or any other file associated with an executable

If commands are ambiguous, PowerShell will stick to the order of that list. So, since the command type “Alias” is at the top of that
list, if you define an alias like “ping”, it will be used instead of ping.exe and thus can override any other command type.

47

It is time to combine commands whenever a sin-
gle PowerShell command can’t solve your prob-
lem. One way of doing this is by using variables.
PowerShell can store results of one command in
a variable and then pass the variable to anoth-
er command. In this chapter, we’ll explain what
variables are and how you can use them to solve
more complex problems.

Chapter 3. Variables

· Personal Variables
 · Selecting Variable Names
 · Assigning and Returning Values
 · Assigning Multiple Variable Values
 · Exchanging the Contents of Variables
 · Assigning Different Values to Several Variables ·
Listing Variables
 · Write-Protecting Variables: Creating Constants 	
 · Variables with Description
 · “Automatic” PowerShell Variables
 · Environment Variables
 · Reading Environment Variables
 · Searching for Environment Variables
 · Modifying Environment Variables
 · Permanent Modifica
tions of Environment Variables
· Scope of Variables
 · Automatic Restriction
 · Changing Variable Visibility
 · Setting Scope
· Scope of Variables
 · Strongly Typing
 · The Advantages of Specialized Types
· Variable Management: Behind the Scenes
 · Modification of Variable Options
 · Write Protecting Variables
 · Examining Strongly Typed Variables
 · Validating Variable Contents
· Summary

Topics Covered:

Personal
Variables

Variables store pieces of information. This way, you can first gather all the information you may need and store them in variables. The
following example stores two pieces of information in variables and then calculates a new result:

Of course, you can have hard-coded the numbers you multiplied. However, variables are the prerequisite for reusable code. By
assigning your data to variables, you can easily change the information, either by manually assigning different values to your variables
or by assigning user-defined values to your variables. By simply replacing the first two lines, your script can interactively ask for the
variable content:

Note that I strongly-typed the variables in this example. You will hear more about variable typing later in that character , but whenever
you use Read-Host or another method that accepts user input, you have to specify the variable data type or else PowerShell will treat
your input as simple string. Simple text is something very different from numbers and you cannot calculate with pieces of text.

PowerShell creates new variables automatically so there is no need to specifically “declare” variables. Simply assign data to a variable.
The only thing you do need to know is that variable names are always prefixed with a “$” to access the variable content.

You can then output the variable content by entering the variable name or you can merge the variable content into strings. Just make
sure to use double-quotes to do that. Single-quoted text will not expand variable values.

Create variables and assign to values

$amount = 120
$amount = 0.19

Calculate

$result = $amount * $VAT

Output result

$result

 22.8

Replace variables in text with values:

$text = “Net amount $amount matches gross amount $result”$amount
$text

 Net amount 120 matches gross amount 142.8

[Int]$amount = “Enter amount of money”
[Double]$VAT = “Enter VAT rate”

49

You are free to call the variable anything you like – as long as the name is not causing misunderstandings. Variable names are
always case-insensitive.

The assignment operator “=” assigns a value to a variable. You can assign almost anything to a variable, even complete command
results:

Selecting Variable Names

Assigning and Returning Values

${#this is a strange variable name} = 12

${#this is a strange variable name}

 12

Temporarily store results of a cmdlet:

$listing = Get-ChildItem c:\
$listing

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

(...)

Temporarily store the result of a legacy external command:

$result = ipconfig
$result

Windows IP Configuration

Ethernet adapter LAN Connection:

Media state

. : Medium disconnected

Connection-specific DNS Suffix:

Ethernet adapter LAN Connection 2:

Media state

. : Medium disconnected

Connection-specific DNS Suffix:

Wireless LAN adapter wireless network connection:

Media state

. : Medium disconnected

50

If you’d like, you can use the assignment operator to assign values to multiple variables at the same time:

Now and then you might want to exchange the contents of two variables. In traditional programming languages, that would require
several steps:

PowerShell keeps a record of all variables, which is accessible via a virtual drive called variable:. Here is how you see all currently
defined variables:

With PowerShell, swapping variable content is much easier because you can assign multiple values to multiple variables. Have a
look:

Assigning Multiple Variable Values

Exchanging the Contents of Variables

Listing Variables

Populate several variables with the same value in one step:
$a = $b = $c = 1 = Get-ChildItem c:\
$a

 1

$b

 1

$c

 1

$Value1 = 10
$Value2 = 20
$Temp = $Value1
$Value1 = $Value2
$Value2 = $Temp

Exchange variable values:
$Value1 = 10; $Value2 = 20
$Value1, $Value2 = 10,20
$Value1, $Value2 = $Value1, $Value2

Dir variable:

51

Aside from your own personal variables, you’ll see many more. PowerShell also defines variables and calls them “automatic
variables.” You’ll learn more about this soon.

Using the variable: virtual drive can help you find variables. If you’d like to see all the variables containing the word “Maximum,” try
this:

Using the cmdlet Test-Path, you can verify whether a certain file exists. Similar to files, variables are stored in their own “drive”
called variable: and every variable has a path name that you can verify with Test-Path. You can use this technique to find out
whether you are running PowerShell v1 or v2:

The solution isn’t quite so simple if you’d like to know which variables currently contain the value 20. It consists of several
commands piped together.

Here, the output from Dir is passed on to Out-String, which converts the results of Dir into string. The parameter -Stream ensures
that every variable supplied by Dir is separately output as string. Select-String selects the lines that include the desired value,
filtering out the rest. White space is added before and after the number 20 to ensure that only the desired value is found and not
other values that contain the number 20 (like 200).

Finding Variables

Verify Whether a Variable Exists

Dir variable:*maximum*

Name Value

---- -----

MaximumErrorCount 256

MaximumVariableCount 4096

MaximumFunctionCount 4096

MaximumAliasCount 4096

MaximumDriveCount 4096

MaximumHistoryCount 1000

dir variable: | Out-String -stream | Select-String “ 20 “

 value2 20

 $ 20

Verify whether the variable $psversiontable exists which is present only in PS v2:
Test-Path variable:\psversiontable

 True

Use this information to check for PS v2
If (Test-Path variable:psversiontable) {

‘You are running PowerShell v2’

} else {

‘You are running PowerShell v1 and should update to v2’

}

 False

52

PowerShell will keep track of variable use and remove variables that are no longer used so there is no need for you to remove
variables manually. If you’d like to delete a variable immediately, again, do exactly as you would in the file system:

To manage your variables, PowerShell provides you with the five separate cmdlets listed in Table 3.1. Two of the five cmdlets offer
substantially new options:

New-Variable enables you to specify options, such as a description or write protection. This makes a variable into a constant. Set-
Variable does the same for existing variables.
Get-Variable enables you to retrieve the internal PowerShell variables store.

Deleting Variables

Using Special Variable Cmdlets

create a test variable:
$test = 1
 True

verify that the variable exists:
Dir variable:\te*

delete variable:
del variable:\test

variable is removed from the listing:
Dir variable:\te*

Cmdlet Description Example

Clear-Variable Clears the contents of a variable, but not the variable itself. The subsequent value of the
variable is NULL (empty). If a data or object type is specified for the variable, by using
Clear-Variable the type of the objected stored in the variable will be preserved.

Clear-Variable a
same as:
$a = $null

Get-Variable Gets the variable object, not the value in which the variable is stored.	 Get-Variable a

New-Variable Creates a new variable and can set special variable options.	 New-Variable
value 12

Remove-
Variable

Deletes the variable, and its contents, as long as the variable is not a constant or is
created by the system.	

Remove-Variable
a same as:
del variable:\a

Set-Variable Resets the value of variable or variable options, such as a description and creates a
variable if it does not exist.

Set-Variable a 12
same as: $a = 12

Table 3.1: Cmdlets for managing variables

53

Constants store a constant value that cannot be modified. They work like variables with a write-protection.

PowerShell doesn’t distinguish between variables and constants. However, it does offer you the option of write-protecting a
variable. In the following example, the write-protected variable $test is created with a fixed value of 100. In addition, a description
is attached to the variable.

The variable is now write-protected and its value may no longer be changed. You’ll receive an error message if you try it anyway.
Because the variable is write-protected, it behaves like a read-only file. You’ll have to specify the parameter -Force to delete it:

As you just saw, a write-protected variable can still be modified by deleting it and creating a new copy of it. If you need stronger
protection, you can create a variable with the Constant option. Now, it can neither be modified nor deleted. Only when you quit
PowerShell are constants removed. Variables with the Constant option may only be created with New-Variable. If a variable already
exists, you cannot make it constant anymore because you’ll get an error message:

Write-Protecting Variables:
Creating Constants

Create new variable with description and write-protection:
New-Variable test -value 100 -description `
“test variable with write-protection” -option ReadOnly

$test

 100

Create new variable with description and write-protection:
$test = 200

 The variable “test” cannot be overwritten since it is a
 constant or read-only.
 At line:1 char:6
 + $test <<<< = 200

#New-Variable cannot write over existing variables:
New-Variable test -value 100 -description `
“test variable with copy protection” -option Constant

 New-Variable : A variable named “test” already exists.
 At line:1 Char:13
 + New-Variable <<<< test -value 100 -description
 “test variable with copy protection” -option Constant

del variable:\test -force

$test = 200

54

If existing variable is deleted, New-Variable can create
a new one with the “Constant” option:
del variable:\test -force
New-Variable test -value 100 -description `

“test variable with copy protection” `

-option Constant

variables with the “Constant” option may neither be
modified nor deleted:
del variable:\test -force

 Remove-Item : variable “test” may not be removed since it is a
 constant or write-protected. If the variable is write-protected,
 carry out the process with the Force parameter.
 At line:1 Char:4
 + del <<<< variable:\test -force

Parameter -force overwrites existing variables if these do not
use the “Constant” option:
New-Variable test -value 100 -description “test variable” -force

 New-Variable : variable “test” may not be removed since it is a
 constant or write-protected.
 At line:1 char:13
 + New-Variable <<<< test -value 100 -description “test variable”

normal variables may be overwritten with -force without difficulty.
$available = 123
New-Variable available -value 100 -description “test variable” -force

Create variable with description:
New-Variable myvariable -value 100 -description “test variable” -force

Variable returns only the value:
$myvariable

 100

You can overwrite an existing variable by using the -Force parameter of New-Variable if the existing variable wasn’t created with
the Constant option. Variables of the constant type are unchangeable once they have been created and -Force does not change
this:

Variables can have an optional description to help you keep track of what the variable was intended for. However, this description
appears to be invisible:

Variables with Description

55

Dir and Get-Variable also do not deliver the description:
Dir variable:\myvariable

 Name Value

 ---- -----

 myvariable 100

 Get-Variable myvariable

 Name Value

 ---- -----

 myvariable 100

Get-Childitem variable:

 Name Value

 ---- -----

 Error {}

 DebugPreference SilentlyContinue

 PROFILE C:\Users\Tobias Weltner\Documents\WindowsPowerShell\Micro...

 HOME C:\Users\Tobias Weltner

 (...)

Get-Childitem variable: | Sort-Object Name |

Format-Table Name, Description -AutoSize -Wrap

“Automatic” PowerShell
Variables
PowerShell also uses variables for internal purposes and calls those “automatic variables.” These variables are available right after
you start PowerShell since PowerShell has defined them during launch. The drive variable: provides you with an overview of all
variables:

You can show their description to understand the purpose of automatic variables:

Use Get-Help to find out more

56

Environment
Variables
There is another set of variables maintained by the operating system: environment variables.

Working with environment variables in PowerShell is just as easy as working with internal PowerShell variables. All you need to do
is add the prefix to the variable name: env:.

By adding env:, you’ve told PowerShell not to look for the variable windir in the default PowerShell variable store, but in Windows
environment variables. In other word, the variable behaves just like any other PowerShell variable. For example, you can embed it
in some text:

PowerShell write protects several of its automatic variables. While you can read them, you can’t modify them. This makes
sense because information, like the process-ID of the PowerShell console or the root directory, must not be modified.

$pid = 12

 Cannot overwrite variable “PID” because it is read-only or constant.
 At line:1 char:5
 + $pid <<<< = 12

A little later in this chapter, you’ll find out more about how write-protection works. You’ll then be able to turn write-
protection on and off for variables that already exist. However, don’t do this for automatic variables because PowerShell
may crash. One reason is because PowerShell continually modifies some variables. If you set them to read-only,
PowerShell may stop and not respond to any inputs.

Important

$env:windir

 C:\Windows

“The Windows folder is here: $env:windir”

The Windows folder is here: C:\Windows

You can read the location of the Windows folder of the current computer from a Windows environment variable:

Variables with Description

57

You can just as easily use the variable with commands and switch over temporarily to the Windows folder like this:

By adding env:, you’ve told PowerShell not to look for the variable windir in the default PowerShell variable store, but in Windows
environment variables. In other word, the variable behaves just like any other PowerShell variable. For example, you can embed it
in some text:

$env:windir

 C:\Windows

$env:windir

 C:\Users\Tobias Weltner

save in current folder:
Push-Location

change to Windows folder
cd $env:windir
Dir

change back to initial location after executed task
Pop-Location

Get-Childitem env:

 Name Value

 ---- -----

 Path C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\

 TEMP C:\Users\TOBIAS~1\AppData\Local\Temp

 ProgramData C:\ProgramData

 PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC;.4mm

 ALLUSERSPROFILE C:\ProgramData

 PUBLIC C:\Users\Public

 OS Windows_NT

 USERPROFILE C:\Users\Tobias Weltner

 HOMEDRIVE C:

 (...)

PowerShell keeps track of Windows environment variables and lists them in the env: virtual drive. So, if you’d like an overview of
all existing environment variables, you can list the contents of the env: drive:

You’ll be able to retrieve the information it contains when you’ve located the appropriate environment variable and you know its
name:

Searching for Environment Variables

58

You can modify environment variables by simply assigning new variables to them. Modifying environment variables can be
useful to change the way your machine acts. For example, all programs and scripts located in a folder that is listed in the “PATH”
environment variable can be launched by simply submitting the file name. You no longer need to specify the complete path or a file
extension.

The next example shows how you can create a new folder and add it to the PATH environment variable. Any script you place into
that folder will then be accessible simply by entering its name:

By default, PowerShell works with the so-called “process” set of environment variables. They are just a copy and only valid inside
your current PowerShell session (and any programs you launch from it). Changes to these environment variables will not persist
and are discarded once you close your PowerShell session.

You have two choices if you need to make permanent changes to your environment variables. You can either make the changes
in one of your profile scripts, which get executed each time you launch PowerShell (then your changes are effective in any
PowerShell session but not outside) or you can use sophisticated .NET methods directly to change the underlying original
environment variables (in which case the environment variable change is visible to anyone, not just PowerShell sessions). This

Modifying Environment Variables

Permanent Modifications of Environment

Create a special folder:
md c:\myTools

Create and example script in this folder:
“ ‘Hello!’ “ > c:\myTools\sayHello.ps1

Typically, you would have to specify a qualified path name:
C:\myTools\sayHello.ps1

Hello!

The folder is now added to the path environment:
$env:path += “;C:\myTools”

All scripts and commands in this folder can be launched by entering their name now:
sayHello

Hello!

$oldValue = [environment]::GetEnvironmentvariable(“Path”, “User”)
$newValue = “;c:\myTools”
[environment]::SetEnvironmentvariable(“Path”, $newValue, “User”)

Access to commands of the .NET Framework as shown in this example will be described in depth in Chapter 6.

Note

59

When you close and restart PowerShell, the Path environment variable will now retain the changed value. You can easily check
this:

The permanent change you just made applies only to you, the logged-on user. If you’d like this change to be in effect for all
computer users, you can replace the “User” argument by “Machine.” You will need full administrator privileges to do that.

$env:Path

You should only change environment variables permanently when there is no other way. For most purposes, it is completely
sufficient to change the temporary process set from within PowerShell. You can assign it the value of $null to remove a value.

Scope of
Variables
PowerShell variables can have a “scope,” which determines where a variable is available. PowerShell supports four special variable
scopes: global, local, private, and script. These scopes allow you to restrict variable visibility in functions or scripts.

Typically, a script will use its own variable scope and isolate all of its variables from the console. So when you run a script to do
some task, it will not leave behind any variables or functions defined by that script once the script is done.

You can change this default behavior in two different ways. One is to call the script “dot-sourced”: type in a dot, then a space, and
then the path to the script. Now, the script’s own scope is merged into the console scope. Every top-level variables and functions
defined in the script will behave as if they had been defined right in the console. So when the script is done, it will leave behind all
such variables and functions.

Dot-sourcing is used when you want to (a) debug a script and examine its variables and functions after the script ran, and (b) for
library scripts whose purpose is to define functions and variables for later use. The profile script, which launches automatically
when PowerShell starts, is an example of a script that always runs dot-sourced. Any function you define in any of your profile
scripts will be accessible in your entire PowerShell session – even though the profile script is no longer running.

While the user of a script can somewhat control scope by using dot-sourcing, a script developer has even more control over
scope by prefixing variable and function names. Let’s use the scope modifiers private, local, script, and global.

Automatic Restriction

Changing Variable Visibility

Setting Scope

60

Script blocks represent scopes in which variables and functions can live. The PowerShell console is the basic scope (global
scope). Each script launched from the console creates its own scope (script scope) unless the script is launched “dot-sourced.” In
this case, the script scope will merge with the caller’s scope.

Functions again create their own scope and functions defined inside of other functions create additional sub-scopes.

Differences become evident only once you create additional scopes, such as by defining a function:

Scope Allocation Description

$private:test = 1 The variable exists only in the current scope. It cannot be accessed in any other scope.

$local:test = 1 Variables will be created only in the local scope. That’s the default for variables that are specified without
a scope. Local variables can be read from scopes originating from the current scope, but they cannot be
modified.

$script:test = 1 This scope represents the top-level scope in a script. All functions and parts of a script can share vari-
ables by addressing this scope.

$global:test = 1

Table 3.3: Variable scopes and validity of variables

$test = 1
$local:test

 1

$script:test = 12
$global:test

 12

$private:test

 12

Define test function:
Function test { “variable = $a”; $a = 1000 }

Create variable in console scope and call test function:
$a = 12
Test

variable

Check variable for modifications after calling test function in console scope:
$a

 12

61

Only when you create a completely new variable by using $private: is it in fact private. If the variable already existed,
PowerShell will not reset the scope. To change scope of an existing variable, you will need to first remove it and then
recreate it: Remove-Variable a would remove the variable $a. Or, you can manually change the variable options: (Get-
Variable a). Options = “Private.” You can change a variable scope back to the initial default “local” by assigning (Get-
Variable a).Options = “None.”

Variable Types
and “Strongly
Variables by default are not restricted to a specific data type. Instead, when you store data in a variable, PowerShell will
automatically pick a suitable data type for you. To find out what data types really are, you can explore data types. Call the method
GetType(). It will tell you the data type PowerShell has picked to represent the data:

PowerShell will by default use primitive data types to store information. If a number is too large for a 32-bit integer, it switches to
64-bit integer. If it’s a decimal number, then the Double data type best represents the data. For text information, PowerShell uses
the String data type. Date and time values are stored in DateTime objects.

(12).GetType().Name

Int32

(1000000000000).GetType().Name

Int64

(12.5).GetType().Name

Double

(12d).GetType().Name

Decimal

(“H”).GetType().Name

String

(Get-Date).GetType().Name

DateTime

62

This process of automatic selection is called “weak typing,” and while easy, it’s also often restrictive or risky. Weakly typed
variables will happily accept anything, even wrong pieces of information. You can guarantee that the variable gets the information
you expected by strongly typing a variable — or else will throw an exception that can alarm you.

Also, PowerShell will not always pick the best data type. Whenever you specify text, PowerShell will stick to the generic string
type. If the text you specified was really a date or an IP address, then there are better data types that will much better represent
dates or IP addresses.

So, in practice, there are two important reasons for you to choose the data type yourself:

 · Type safety: If you have assigned a type to a variable yourself, then the type will be preserved no matter what and will never 	
 be automatically changed to another data type. You can be absolutely sure that a value of the correct type is stored in the 	
 variable. If someone later on wants to mistakenly assign a value to the variable that doesn’t match the originally chosen type, 	
 this will cause an exception.
 · Special variable types: When automatically assigning a variable type, PowerShell will choose from generic variable types like 	
 Int32 or String. Often, it’s much better to store values in a specialized and more meaningful variable type like DateTime.

You can enclose the type name in square brackets before the variable name to assign a particular type to a variable. For example,
if you know that a particular variable will hold only numbers in the range 0 to 255, you can use the Byte type:

If you store a date as String, you’ll have no access to special date functions. Only DateTime objects offer all kinds of methods
to deal with date and time information. So, if you’re working with date and time information, it’s better to store it explicitly as
DateTime:

The variable will now store your contents in a single byte, which is not only very memory-efficient, but it will also raise an error if a
value outside the range is specified:

Strongly Typing

The Advantages of Specialized Types

[Byte]$flag = 12
$flag.GetType().Name

 Byte

$date = “November 12, 2004”
$date

 November 12, 2004

$flag = 300

 The value “300” cannot be converted to the type “System.Byte”.
 Error: “The value for an unsigned byte was too large or too small.”
 At line:1 char:6
 + $flag <<<< = 300

63

If you store a date as String, then you’ll have no access to special date functions. Only DateTime objects make them available. So,
if you’re working with date and time indicators, it’s better to store them explicitly as DateTime:

Now, since the variable converted the text information into a specific DateTime object, it tells you the day of the week and also
enables specific date and time methods. For example, a DateTime object can easily add and subtract days from a given date. This
will get you the date 60 days from the date you specified:

PowerShell supports all.NET data types. XML documents will be much better represented using the XML data type then the
standard String data type:

[datetime] = “November 12, 2004”
$date

 Friday, November 12, 2004 00:00:00

$date.AddDays(60)

 Tuesday, January 11, 2005 00:00:00

PowerShell stores a text in XML format as a string:
$t = “<servers><server name=’PC1’ ip=’10.10.10.10’/>” +
“<server name=’PC2’ ip=’10.10.10.12’/></servers>”

$t

<servers><server name=’PC1’ ip=’10.10.10.10’/>

<server name=’PC2’ ip=’10.10.10.12’/></servers>

If you assign the text to a data type[xml], you’ll
suddenly be able to access the XML structure:
[xml]$list = $t
$list.servers

server

{PC1, PC2}

$list.servers.server

name ip

---- --

PC1 10.10.10.10

PC2 10.10.10.12

Even changes to the XML contents are possible:
$list.servers.server[0].ip = “10.10.10.11”
$list.servers

name ip

---- --

PC1 10.10.10.11

PC2 10.10.10.12

64

The result could be output again as text, including the
modification:
$list.get_InnerXML()

<servers><server name=”PC1” ip=”10.10.10.11” />

<server name=”PC2” ip=”10.10.10.12” /></servers>

Variable type Description Example

[array] An array

[bool] Yes-no value [boolean]$flag = $true

[byte] Unsigned 8-bit integer, 0...255	 [byte]$value = 12

[char] Individual unicode character	 [char]$a = “t”

[datetime] Date and time indications	 [datetime]$date = “12.Nov 2004
12:30”

[decimal] Decimal number [decimal]$a = 12
$a = 12d

[double] Double-precision floating point decimal	 $amount = 12.45

[guid] Globally unambiguous 32-byte identification number	 [guid]$id = [System.Guid]::NewGuid()
$id.toString()

[hashtable] Hash table

[int16] 16-bit integer with characters	 [int16]$value = 1000

[int32], [int] 32-bit integers with characters	 [int32]$value = 5000

[int64], [long] 64-bit integers with characters	 [int64]$value = 4GB

[nullable] Widens another data type to include the ability to contain null values. It can be used, among
others, to implement optional parameters	

[Nullable``1[[System.DateTime]]]$test
= Get-Date
$test = $null

[psobject] PowerShell object	

[regex] Regular expression $text = “Hello World”
[regex]::split($text, “lo”)

[sbyte] 8-bit integers with characters	 [sbyte]$value = -12

[scriptblock] PowerShell scriptblock

[single], [float] Single-precision floating point number	 [single]$amount = 44.67

[string] String [string]$text = “Hello”

[switch] PowerShell switch parameter

[timespan] Time interval [timespan]$t = New-TimeSpan
$(Get-Date) “1.Sep 07”

[type] Type

[uint16] Unsigned 16-bit integer [uint16]$value = 1000

[uint32] Unsigned 32-bit integer [uint32]$value = 5000

[uint64] Unsigned 64-bit integer [uint64]$value = 4GB

[xml] XML document

Table 3.5: Commonly used .NET data types

65

Variable Management:
Behind the Scenes
Whenever you create a new variable in PowerShell, it is stored in a PSVariable object. This object contains not just the value of the
variable, but also other information, such as the description that you assigned to the variable or additional options like write-pro-
tection.

If you retrieve a variable in PowerShell, PowerShell will return only the variable value. If you’d like to see the remaining information
that was assigned to the variable, you’ll need the underlying PSVariable object. Get-Variable will get it for you:

 · Description: The description you specified for the variable.
 · Value: The value assigned currently to the variable (i.e. its contents).
 · Options: Options that have been set, such as write-protection or AllScope.
 · Attributes: Additional features, such as permitted data type of a variable for strongly typed variables. The brackets behind
 Attributes indicate that this is an array, which can consist of several values that can be combined with each other.

You can now display all the information about $testvariable by outputting $psvariable. Pipe the output to the cmdlet Select-Object
to see all object properties and not just the default properties:

$testvariable = “Hello”
$psvariable = Get-Variable testvariable

$psvariable | Select-Object

Name : testvariable

Description :

Value : Hello

Options : None

Attributes : {}

One reason for dealing with the PSVariable object of a variable is to modify the variable’s settings. Use either the cmdlet Set-
Variable or directly modify the PSVariable object. For example, if you’d like to change the description of a variable, you can get the
appropriate PSVariable object and modify its Description property:

Modification of Variables Options

Create new variable:
$test = “New variable”

66

Create PSVariable object:
$psvariable = Get-Variable test

Modify description:
$psvariable.Description = “Subsequently added description”
Dir variable:\test | Format-Table name, description

Name Description

---- -----------

test Subsequently added description

Get PSVariable object and directly modify the description:
(Get-Variable test).Description =
“An additional modification of the description.”

Dir variable:\test | Format-Table name, description

Name Description

---- -----------

test An additional modification of the description.

Modify a description of an existing variable with Set-Variable:
Set-Variable test -description “Another modification”
Dir variable:\test | Format-Table name, description

Name Description

---- -----------

test Another modification

As you can see in the example above, you do not need to store the PSVariable object in its own variable to access its Description
property. Instead, you can use a sub-expression, i.e. a statement in parentheses. PowerShell will then evaluate the contents of the
sub-expression separately. The expression directly returns the required PSVariable object so you can then call the Description prop-
erty directly from the result of the sub-expression. You could have done the same thing by using Set-Variable. Reading the settings
works only with the PSVariable object:

(Get-Variable test).Description

An additional modification of the description.

For example, you can add the ReadOnly option to a variable if you’d like to write-protect it:

Write-Protecting Variables

$Example = 10

Put option directly in PSVariable object:
(Get-Variable Example).Options = “ReadOnly”

67

$Example = 10

Put option directly in PSVariable object:
(Get-Variable Example).Options = “ReadOnly”

Modify option as wish with Set-Variable; because the variable
is read-only, -force is required:
Set-Variable Example -option “None” -force

Write-protection turned off again; variable contents may now
be modified freely:
$Example = 20

A normal variable may not be converted into a constant:
$constant = 12345
(Get-Variable constant).Options = “Constant”

 Exception in setting “Options”: “The existing variable “constant”
 may not be set as a constant. Variables may only be set as
 constants when they are created.”
 At line:1 char:26
 + (Get-Variable constant).O <<<< options = “Constant”

The Constant option must be set when a variable is created because you may not convert an existing variable into a constant.

Option Description

“None” NO option (default)

“ReadOnly” Variable contents may only be modified by means of the -force parameter

“Constant”	 Variable contents can’t be modified at all. This option must already be specified when the variable is
created. Once specified this option cannot be changed.

“Private”	 The variable is visible only in a particular context (local variable).

“AllScope”	 The variable is automatically copied in a new variable scope.

Table 3.6: Options of a PowerShell variable

68

List attributes and delete:
$constant = 12345
(Get-Variable a).Attributes

 TypeId

 System.Management.Automation.ArgumentTypeConverterAttribute

 # Delete type specification:
 (Get-Variable a).Attributes.Clear()

Strong type specification is removed; now the variable can
store text again:
$a = “Test”

$a = “Hello”
$aa = Get-Variable a
$aa.Attributes.Add($(New-Object `
System.Management.Automation.ValidateLengthAttribute `

-argumentList 2,8))
$a = “Permitted”
$a = “This is prohibited because its length is not from 2 to 8 characters”

 Because of an invalid value verification (Prohibited because
 its length is not from 2 to 8 characters) may not be carried out for
 the variable “a”.
 At line:1 char:3
 + $a <<<< = “Prohibited because its length is not from 2 to 8

Once you assign a specific data type to a variable as shown above, PowerShell will add this information to the variable attributes. .

If you delete the Attributes property, the variable will be unspecific again so in essence you remove the strong type again:

The Attributes property of a PSVariable object can include additional conditions, such as the maximum length of a variable. In
the following example, a valid length from two to eight characters is assigned to a variable. An error will be generated if you try to
store text that is shorter than two characters or longer than eight characters:

In the above example Add() method added a new .NET object to the attributes with New-Object. You’ll learn more about New-
Object in Chapter 6. Along with ValidateLengthAttribute, there are additional restrictions that you can place on variables.

Examining Strongly Typed Variables

Validating Variable Contents

69

$email = “tobias.weltner@powershell.com”
$v = Get-Variable email
$pattern = “\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b”
$v.Attributes.Add($(New-Object `
System.Management.Automation.ValidatePatternAttribute `

-argumentList $pattern))
$email = “valid@email.de”
$email = “invalid@email”

 Because of an invalid value verification (invalid@email) may not
 be carried out for the variable “email”.
 At line:1 char:7
 + $email <<<< = “invalid@email”

$age = 18
$v = Get-Variable age
$v.Attributes.Add($(New-Object `
System.Management.Automation.ValidateRangeAttribute `

-argumentList 5,100))
$age = 30
$age = 110

 Because of an invalid value verification (110) may not be
 carried out for the variable “age”.
 At line:1 char:7
 + $age <<<< = 110

In the following example, the variable must contain a valid e-mail address or all values not matching an e-mail address will generate
an error. The e-mail address is defined by what is called a Regular Expression. You’ll learn more about Regular Expressions in
Chapter 13.

If you want to assign a set number range to a variable, use ValidateRangeAttribute. The variable $age accepts only numbers from
5 to 100:

Restriction Category

Variable may not be zero	 ValidateNotNullAttribute

Variable may not be zero or empty	 ValidateNotNullOrEmptyAttribute

Variable must match a Regular Expression	 ValidatePatternAttribute

Variable must match a particular number range	 ValidateRangeAttribute

Variable may have only a particular set value	 ValidateSetAttribute

Table 3.6: Options of a PowerShell variable

70

$email = “tobias.weltner@powershell.com”
$v = Get-Variable email
$pattern = “\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b”
$v.Attributes.Add($(New-Object `
System.Management.Automation.ValidatePatternAttribute `

-argumentList $pattern))
$email = “valid@email.de”
$email = “invalid@email”

 Because of an invalid value verification (invalid@email) may not
 be carried out for the variable “email”.
 At line:1 char:7
 + $email <<<< = “invalid@email”

$age = 18
$v = Get-Variable age
$v.Attributes.Add($(New-Object `
System.Management.Automation.ValidateRangeAttribute `

-argumentList 5,100))
$age = 30
$age = 110

 Because of an invalid value verification (110) may not be
 carried out for the variable “age”.
 At line:1 char:7
 + $age <<<< = 110

In the following example, the variable must contain a valid e-mail address or all values not matching an e-mail address will generate
an error. The e-mail address is defined by what is called a Regular Expression. You’ll learn more about Regular Expressions in
Chapter 13.

If you want to assign a set number range to a variable, use ValidateRangeAttribute. The variable $age accepts only numbers from
5 to 100:

Restriction Category

Variable may not be zero	 ValidateNotNullAttribute

Variable may not be zero or empty	 ValidateNotNullOrEmptyAttribute

Variable must match a Regular Expression	 ValidatePatternAttribute

Variable must match a particular number range	 ValidateRangeAttribute

Variable may have only a particular set value	 ValidateSetAttribute

Table 3.6: Options of a PowerShell variable

71

$age = “yes”
$v = Get-Variable option
$v.Attributes.Add($(New-Object `
System.Management.Automation.ValidateRangeAttribute `

-argumentList “yes”, “no”, “perhaps”))
$option = “no”
$option = “perhaps”
$option = “don’t know”

 Verification cannot be performed because of an invalid value
 (don’t know) for the variable “option”.
 At line:1 char:8
 + $option <<<< = “don’t know”

If you would like to limit a variable to special key values, ValidateSetAttribute is the right option. The variable $option accepts only
the contents yes, no, or perhaps:

Summary
Variables store information. Variables are by default not bound to a specific data type, and once you assign a value to a variable,
PowerShell will automatically pick a suitable data type. By strongly-typing variables, you can restrict a variable to a specific data
type of your choice. You strongly-type a variable by specifying the data type before the variable name:

You can prefix the variable name with “$” to access a variable. The variable name can consist of numbers, characters, and special
characters, such as the underline character “_”. Variables are not case-sensitive. If you’d like to use characters in variable names
with special meaning to PowerShell (like parenthesis), the variable name must be enclosed in brackets. PowerShell doesn’t require
that variables be specifically created or declared before use.

There are pre-defined variables that PowerShell will create automatically. They are called “automatic variables.” These variables tell
you information about the PowerShell configuration. For example, beginning with PowerShell 2.0, the variable $psversiontable will
dump the current PowerShell version and versions of its dependencies:

Strongly type variable a:
[Int]$a = 1

PS > $PSVersionTable

Name Value

---- -----

CLRVersion 2.0.50727.4952

BuildVersion 6.1.7600.16385

PSVersion 2.0

WSManStackVersion 2.0

PSCompatibleVersions {1.0, 2.0}

SerializationVersion 1.1.0.1

PSRemotingProtocolVersion 2.1

72

You can change the way PowerShell behaves by changing automatic variables. For example, by default PowerShell stores only
the last 64 commands you ran (which you can list with Get-History or re-run with Invoke-History). To make PowerShell remember
more, just adjust the variable $MaximumHistoryCount:

PowerShell will store variables internally in a PSVariable object. It contains settings that write-protect a variable or attach a
description to it (Table 3.6). It’s easiest for you to set this special variable options by using the New-Variable or Set-Variable
cmdlets (Table 3.1).

Every variable is created in a scope. When PowerShell starts, an initial variable scope is created, and every script and every
function will create their own scope. By default, PowerShell accesses the variable in the current scope, but you can specify other
scopes by adding a prefix to the variable name\: local:, private:, script:, and global:.

PS > $MaximumHistoryCount

 64

PS > $MaximumHistoryCount = 1000

PS > $MaximumHistoryCount

 1000

73

Whenever a command returns more
than one result, PowerShell will auto-
matically wrap the results into an array.
So dealing with arrays is important in
PowerShell. In this chapter, you will
learn how arrays work. We will cover
simple arrays and also so-called “as-
sociative arrays,” which are also called
“hash tables.”

Chapter 4.
Arrays and Hashtables

Topics Covered:

· PowerShell Commands Returns Arrays
 · Discovering Arrays
 · Processing Array Elements in a Pipeline
 · Working with Real Objects
 · Creating New Arrays
 · Polymorphic Arrays
 · Arrays With Only One (Or No) Element
 · Addressing Array Elements
 · Choosing Several Elements from an Array
 · Adding Elements to an Array and Removing Them
· Using Hash Tables
 · Creating a New Hash Table
 · Creating Objects From Hash Tables
 · Using Hash tables To Calculate Properties
 · Storing Arrays in Hash Tables
 · Inserting New Keys in an Existing Hash Table
 · Modifying and Removing Values
· Copying Arrays and Hash Tables
· Strongly Typed Arrays
· Summary

PowerShell Commands
Return Arrays
If you store the result of a command in a variable and then output it, you might at first think that the variable contains plain text:

In reality, the result consists of a number of pieces of data, and PowerShell returns them as an array. This occurs automatically when-
ever a command returns more than a single piece of data.

$a = inconfig
$a

 Windows IP Configuration

 Ethernet adapter LAN Connection

 Media state

 : Medium disconnected

 Connection-specific DNS Suffix:

 Connection location IPv6 Address . : fe80::6093:8889:257e:8d1%8

 IPv4 address : 192.168.1.35

 Subnet Mask : 255.255.255.0

$a = “Hello”
$a -is [Array]

 False

$a = ipconfig
$a -is [Array]

 True

$a .Count

 53

You can check the data type to find out whether a command will return an array:

You can check the data type to find out whether a command will return an array:

Discovering Arrays

75

Here, the ipconfig command returned 53 single results that were all stored in $a. If you’d like to examine a single array element, you
can specify its index number. If an array has 53 elements, then its valid index numbers are 0 to 52 (the index always starts at 0).

It is important to understand just when PowerShell will use arrays. If a command returns just one result, it will happily return that exact
result to you. Only when a command returns more than one result will it wrap them in an array.

Of course, this will make writing scripts difficult because sometimes you cannot predict whether a command will return one, none, or
many results. That’s why you can make PowerShell return any result as an array.

Use @() if you’d like to force a command to always return its result in an array. This way you find out the number of files in a folder:

Or in a line

Show the second element:
$a[1]

 Windows IP Configuration

$result = Dir
$result -is [array]

 True

$result = Dir C:\autoexec.bat
$result -is [array]

 False	

$result = @(Dir $env:windir -ea 0)
$result .Count

$result = @(Dir $env:windir -ea 0).Count

Ipconfig will return each line of text as an array element. This is great since all the text lines are individual array elements, allowing
you to process them individually in a pipeline. For example, you can filter out unwanted text lines:

Processing Array Elements in a Pipeline

Store result of an array and then pass along a pipeline to Select-String:
$result = ipconfig
$result | Where-Object { $_ -like “*Address*”

76

 Connection location IPv6 Address . . . : fe80::6093:8889:257e:8d1%8

 IPv4 address : 192.168.1.35

 Connection location IPv6 Address . : fe80::5efe:192.168.1.35%16

 Connection location IPv6 Address . . . : fe80::14ab:a532:a7b9:cd3a%11

	

 # Access the fifth element:
$result[4]

Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\

Tobias Weltner

Mode LastWriteTime Length Name

---- ------------- ------ ----

d-r-- 04.10.2007 14:21 Desktop

Dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\

 Tobias Weltner

 Mode LastWriteTime Length Name

 ---- ------------- ------ ----

 d---- 10/01/2007 16:09 Application Data

 d---- 07/26/2007 11:03 Backup

 d-r-- 04/13/2007 15:05 Contacts

 d---- 06/28/2007 18:33 Debug

 d-r-- 10/04/2007 14:21 Desktop

 d-r-- 10/04/2007 21:23 Documents

 d-r-- 10/09/2007 12:21 Downloads

 (...)

$result = Dir
$result.Count

 82

As such, the result of ipconfig was passed to Where-Object, which filtered out all text lines that did not contain the keyword you
were seeking. With minimal effort, you can now reduce the results of ipconfig to the information you deem relevant.

Ipconfig is a legacy command, not a PowerShell cmdlet. While it is a command that will return individual information stored in
arrays, this individual information will consist of plain text. Real PowerShell cmdlets will return rich objects, not text, even though
the results will appear as plain text:

Every element in an array will represent a file or a directory. So if you output an element from the array to the console, PowerShell
will automatically convert the object into text:

Let’s check if the return value is an array:

Working with Real Objects

77

Display all properties of this element:
$result[4] | Format-List *

 PSPath : Microsoft.PowerShell.Core\FileSystem::

 C:\Users\Tobias Weltner\Desktop

 PSParentPath : Microsoft.PowerShell.Core\FileSystem::

 C:\Users\Tobias Weltner

 PSChildName : Desktop

 PSDrive : C

 PSProvider : Microsoft.PowerShell.Core\FileSystem

 PSIsContainer : True

 Mode : d-r--

 Name : Desktop

 Parent : Tobias Weltner

 Exists : True

 Root : C:\

 FullName : C:\Users\Tobias Weltner\Desktop

 Extension :

 CreationTime : 04/13/2007 01:54:53

 CreationTimeUtc : 04/12/2007 23:54:53

 LastAccessTime : 10/04/2007 14:21:20

 LastAccessTimeUtc : 10/04/2007 12:21:20

 LastWriteTime : 10/04/2007 14:21:20

 LastWriteTimeUtc : 10/04/2007 12:21:20

 Attributes : ReadOnly, Directory

In reality, each element returned by Dir (Get-Childitem) is really an object with a number of individual properties. Some of these
properties surfaced in the previous example as column headers (like Mode, LastWriteTime, Length, and Name). The majority of
properties did not show up, though. To see all object properties, you can pipe them on to Select-Object and specify an “*” to show
all properties. PowerShell will now output them as list rather than table since the console is too narrow to show them all

You’ll learn more about these types of objects in Chapter 5.

Creating
New Arrays

You can easily create your own arrays. Simply use a comma to place elements into an array:

$array = 1,2,3,4
$array

 1
 2

 3

 4

78

There’s even a shortcut for number ranges:

Just like variables, individual elements of an array can store any type of value you assign. This way, you can store whatever you
want in an array, even a mixture of different data types. Again, you can separate the elements by using commas:

How do you create arrays with just one single element? Here’s how:

$array = 1..4
$array

 1
 2

 3

 4

$array = “Hello”, “World”, 1, 2, (Get-Date)
$array

 Hello
 World

 1

 2

 Tuesday, August 21, 2007 12:12:28

$array = ,1
$array .Length

 1

Polymorphic Arrays

Arrays With Only One (Or No) Element

Why is the Get-Date cmdlet enclosed in parentheses? Just try it without parentheses. Arrays can only store data. Get-Date
is a command and no data. Since you want PowerShell to evaluate the command first and then put its result into the array,
you will need to use parentheses. Parentheses will identify a sub-expression and tell PowerShell to evaluate and process it
first.

Important

79

You’ll need to use the construct @(...)to create an array without any elements at all:

Why would you want to create an empty array in the first place? Because you can add elements to it like this when you start with
an empty array:

$array = @()
$array.Length

 0

$array = @(12)
$array

 12

$array = @(1,2,3,”Hello”)
$array

 1

 2

 3

 Hello

$array = @()
$array += 1
$array += 3

 1

 3

Addresing Array
Elements

Every element in an array is addressed using its index number. You will find that negative index numbers count from last to first. You
can also use expressions that calculate the index value:

Create your own new array:
$array = -5..12

Access the first element:
$array [0]

80

Access the last element (several methods):
$array = [-1]

 12

$array[$array.Count-1]

 12

$array[$array.lenght-1]

 12

Access a dynamically generated array that is not stored in a variable:
(-5..12)[2]

 -3

Remember, the first element in your array will always have the index number 0. The index -1 will always give you the last element in
an array. The example demonstrates that the total number of all elements will be returned in two properties: Count and Length. Both
of these properties will behave identically.

Here is a real-world example using arrays and accessing individual elements. First, assume you have a path and want to access
only the file name. Every string object has a built-in method called Split() that can split the text into chunks. All you will need to do is
submit the split character that is used to separate the chunks:

As you see, by splitting a path at the backslash, you will get its components. The file name is always the last element of that array.
So to access the filename, you will access the last array element:

PS > $path = “c:\folder\subfolder\file.txt”

PS > $array = $path.Split(‘\’)

PS > $array

c:

folder

subfolder

file.txt

PS > $array[-1]

 file.txt

81

Likewise, if you are interested in the file name extension, you can change the split character and use “.” instead:

PS > $path.Split(‘.’)[-1]

 txt

You can also access more than one array element at once by specifying multiple index numbers. The result is a new array that
contains the subset that you picked from the original array:

The second line will select the second, fifth, eighth, and thirteenth elements (remember that the index begins at 0). You can use
this approach to reverse the contents of an array:

Store directory listing in a variable:
$list = dir $home

Output only the 2nd, 5th, 8th, and 13th entry:
$list[1,4,7,12]

Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\

Tobias Weltner

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 07/26/2007 11:03 Backup

d-r-- 08/20/2007 07:52 Desktop

d-r-- 08/12/2007 10:21 Favorites

d-r-- 04/13/2007 01:55 Saved Games

Create an array with values from 1 to 10
$array = 1..10

Select the elements from 9 to 0 (output array contents
in reverse order):
$array = $array[($array.length-1)..0]
$array

 10

 9

 ...

 1

Choosing Several
Elements from an Array

82

Reversing the contents of an array using the approach described above is not particularly efficient because PowerShell
has to store the result in a new array. Instead, you can use the special array functions of the .NET Framework (see
Chapter 6). This will enable you to reverse the contents of an array very efficiently:

Pro Tip

Create an array containing text and output contents:
$a = ipconfig
$a

Reverse array contents and then output it again:
[array]::Reverse($a)

$a

Arrays will always contain a fixed number of elements. You’ll have to make a new copy of the array with a new size to add or
remove elements later. You can simply use the “+=” operator to do that and then add new elements to an existing array:

You will find that array sizes can’t be modified so PowerShell will work behind the scenes to create a brand-new, larger array,
copying the contents of the old array into it, and adding the new element. PowerShell will work exactly the same way when you
want to delete elements from an array. Here, too, the original array is copied to a new, smaller array while disposing of the old
array. For example, the next line will remove elements 4 and 5 using the indexes 3 and 4:

As you can imagine, creating new arrays to add or remove array elements is a slow and expensive approach and is only useful
for occasional array manipulations. A much more efficient way is to convert an array to an ArrayList object, which is a specialized
array. You can use it as a replacement for regular arrays and benefit from the added functionality, which makes it easy to add,
remove, insert or even sort array contents:

Store directory listing in a variable:
$array += “New Value”
$array

 1
 2

 3

 New Value

$array = $array [0..2] + $array[5..10]
$array.Count

 9

Adding Elements to an
Array and Removing Them

83

PS > $array = 1..10

PS > $superarray = [System.Collections.ArrayList]$array

PS > $superarray.Add(11) | Out-Null

PS > $superarray.RemoveAt(3)

PS > $superarray.Insert(2,100)

PS > $superarray

 1

 2

 100

 3

 5

 6

 7

 8

 9

 10

 11

PS > $superarray.Sort()

PS > $superarray

 1

 2

 3

 5

 6

 7

 8

 9

 10

 11

 100

PS > $superarray.Reverse()

PS > $superarray

 100

 11

 10

 9

 8

 7

 6

 5

 3

 2

 1

84

Using Hash
Tables

Hash tables store “key-value pairs.” So, in hash tables you do not use a numeric index to address individual elements, but rather the
key you assigned to a value.

When creating a new hash table, you can use @{} instead of @(), and specify the key-value pair that is to be stored in your new
hash table. You can use semi-colons to separate key-value pairs:

Creating a New Hash Table

Create a new hash table with key-value pairs
$list = @{Name = “PC01”; IP=”10.10.10.10”; User=”Tobias Weltner”}

 Name Value

 ---- -----

 Name PC01

 IP 10.10.10.10

 User Tobias Weltner

Access to the key “IP” returns the assigned value:
$list[“IP”]

 10.10.10.10

As for arrays, several elements can be selected at the same time:
$list[“Name”, “IP”]

 PC01

 10.10.10.10

A key can also be specified by dot notation:
$list.IP

 10.10.10.10

A key can even be stored in a variable:
$key = “IP”
$list.$key

 10.10.10.10

85

Keys returns all keys in the hash table:
$list.keys

 Name

 IP

 User

If you combine this, you can output all values in the hash table
$list[$list.

 PC01
 10.10.10.10

 Tobias Weltner

PS> $info = @{}
PS> $info.BIOSVersion = Get-WmiObject Win32_BIOS | Select-Object -ExpandProperty Version
PS> $info.OperatingSystemVersion = Get-WmiObject win32_OperatingSystem | Select
-Object -ExpandProperty Version
PS> $info.PowerShellVersion = $PSVersionTable.psversion.ToString()
PS> New-Object PSObject -property $info

OperatingSystemVersion BIOSVersion PowerShellVersion
---------------------- ----------- -----------------

6.1.7600 SECCSD - 6040000 2.0

The example shows that you how to retrieve the values in the hash table using the assigned key. There are two forms of notation
you can use to do this:

· Square brackets: Either you use square brackets, like in arrays;
· Dot notation: Or you use dot notation, like with objects, and specify respectively the key name with the value you want to return. 	
 The key name can be specified as a variable.

The square brackets can return several values at the same time exactly like arrays if you specify several keys and separate them by
a comma. Note that the key names in square brackets must be enclosed in quotation marks (you don’t have to do this if you use
dot notation).

One area where hash tables are used is when you want to return text results into real objects. First, create a hash table and then
convert this into an object. Let’s say you want to combine information you retrieved from different sources into one consolidated
result object. Here is how you can do this:

Creating Objects From Hash Tables

86

$MBSize = @{Name=’Size (MB)’; Expression={ if ($_.Length -ne $null) {‘{0:0.0} MB’
 -f ($_.Length / 1MB) } else { ‘n/a’} }}

Setting formatting specifications for each column in a hash table:
$column1 = @{expression=”Name”; width=30; label=”filename”; alignment=”left”}
$column2 = @{expression=”LastWriteTime”; width=40; label=”last modification”;
alignment=”right”}

Output contents of a hash table:
$column1
Name Value

---- -----

alignment left

label File name

width 30
expression Name

Dir $env:windir | Select-Object Name, LastWriteTime, $MBSize

Another scenario where hash tables are used is to calculate properties that do not exist. For example, if you’d like to display file
size in Megabytes instead of bytes, you can create a hash table with the keys “Name” and “Expression.” “Name” will hold the
name of the calculated property, and “Expression” will define a script block used to calculate the property:

Note: Because of a PowerShell bug, this will only work when you create the hash table with initial values like in the example above.
It will not work when you first create an empty hash table and then add the key-value pairs in a second step.

Hash tables can control even more aspects when using them in conjunction with the family of Format-* cmdlets. For example, if
you use Format-Table, you can then pass it a hash table with formatting details:

 · Expression: The name of object property to be displayed in this column
 · Width: Character width of the column
 · Label: Column heading
 · Alignment: Right or left justification of the column

You can just define a hash table with the formatting information and pass it on to Format-Table:

You can now use your hash table to add the calculated property to objects:

Using Hash Tables
to Calculate Properties

87

Output Dir command result with format table and selected formatting:
Dir | Format-Table $column1, $column2
File Name last modification

--------- ---------------

Application data 10/1/2007 16:09:57

Backup 07/26/2007 11:03:07

Contacts 04/13/2007 15:05:30

Debug 06/28/2007 18:33:29

Desktop 10/4/2007 14:21:20

Documents 10/4/2007 21:23:10

(...)

Create hash table with arrays as value:
$test = @{ value1 = 12; value2 = 1,2,3 }

Return values (value 2 is an array with three elements):
$test.value1
12

$test.value2
1

2

3

Create hash table with arrays as value:
$list = @{Name = “PC01”; IP=”10.10.10.10”; User=”Tobias Weltner”}

Insert two new key-value pairs in the list (two different notations are possible):
$list.Date = Get-Date
$list[“Location”] = “Hanover”

You’ll learn more about format cmdlets like Format-Table in the Chapter 5.

You can store classic array inside of hash tables, too. This is possible because hash tables use the semi-colon as key-value pair
separators, which leaves the comma available to create classic arrays:

If you’d like to insert new key-value pairs in an existing hash table, you can just specify the new key and the value that is to be
assigned to the new key. Again, you can choose between the square brackets and dot notations.

Storing Arrays in Hash Tables

Storing Arrays
in Hash Tables

88

Check result:
$list
Name Value
---- -----

Name PC01

Location Hanover

Date 08/21/2007 13:00:18
IP 10.10.10.10
User Tobias Weltner

Create empty hash table
$list = @{}

Subsequently insert key-value pairs when required
$list.Name = “PC01”
$list.Location = “Hanover”
(...)

You can create empty hash tables and then insert keys as needed because it’s easy to insert new keys in an existing hash table:

Overwrite the value of an existing key with a new value (two possible notations):
$list[“Date”] = (Get-Date).AddDays(-1)
$list.Location = “New York”

Name Value

---- -----

Name PC01

Location New York

Date 08/20/2007 13:10:12

IP 10.10.10.10

User Tobias Weltner

If all you want to do is to change the value of an existing key in your hash table, just overwrite the value:

If you’d like to completely remove a key from the hash table, use Remove() and as an argument specify the key that you want to
remove:

Modifying and Removing Values

$list.remove(“Date”)

89

Both lines return the same result:
Dir

Dir | Format-Table

An interesting use for hash tables is to format text. Normally, PowerShell outputs the result of most commands as a table and
internally uses the cmdlet Format-Table:

If you use Format-Table, you can pass it a hash table with formatting specifications. This enables you to control how the result of
the command is formatted.

Every column is defined with its own hash table. In the hash table, values are assigned to the following four keys:

 · Expression: The name of object property to be displayed in this column
 · Width: Character width of the column
 · Label: Column heading
 · Alignment: Right or left justification of the column

All you need to do is to pass your format definitions to Format-Table to ensure that your listing shows just the name and date of
the last modification in two columns:

Using Hash Tables for
Output Formatting

Setting formatting specifications for each column in a hash table:
$list = @{expression=”Name”; width=30; `
label=”filename”; alignment=”left”}
$column2 = @{expression=”LastWriteTime”; width=40; `
label=”last modification”; alignment=”right”}

Output contents of a hash table:
$column1

 Name Value

 ---- -----

 alignment left

 label File name

 width 30

 expression Name

Output Dir command result with format table and
selected formatting:
Dir | Format-Table $column1, $column2

File Name Last Modification
--------- ---------------
Application Data 10/1/2007 16:09:57
Backup 07/26/2007 11:03:07

90

 File Name Last Modification

 --------- ---------------

 Application Data 10/1/2007 16:09:57

 Backup 07/26/2007 11:03:07

 Contacts 04/13/2007 15:05:30

 Debug 06/28/2007 18:33:29

 Desktop 10/4/2007 14:21:20

 Documents 10/4/2007 21:23:10

 (...)

$array1 = 1,2,3
$array2 = $array1
$array2[0] = 99
$array1[0]

 99

$array1 = 1,2,3
$array2 = $array1.Clone()
$array2[0] = 99
$array1[0]

 1

You’ll learn more about format cmdlets like Format-Table in the Chapter 5.

Copying arrays or hash tables from one variable to another works, but may produce unexpected results. The reason is that arrays
and hash tables are not stored directly in variables, which always store only a single value. When you work with arrays and hash
tables, you are dealing with a reference to the array or hash table. So, if you copy the contents of a variable to another, only the
reference will be copied, not the array or the hash table. That could result in the following unexpected behavior:

Although the contents of $array2 were changed in this example, this affects $array1 as well, because they are both identical. The
variables $array1 and $array2 internally reference the same storage area. Therefore, you have to create a copy if you want to copy
arrays or hash tables,:

Whenever you add new elements to an array (or a hash table) or remove existing ones, a copy action takes place automatically in
the background and its results are stored in a new array or hash table. The following example clearly shows the consequences:

Copying Arrays
and Hash Tables

91

Create array and store pointer to array in $array2:
$array1 = 1,2,3
$array2 = $array1

Assign a new element to $array2. A new array is created in the process and stored in
$array2 += 4
$array2[0]=99

$array1 continues to point to the old array:
$array1[0]

 1

Create a strongly typed array that can store whole numbers only:
[int[]]$array = 1,2,3

Everything that can be converted into a number is allowed
(including strings):
$array += 4
$array += 12.56
$array += “123”

If a value cannot be converted into a whole number, an error
will be reported:
$array += “Hello”

 The value “Hello” cannot be converted into the type “System.Int32”.
 Error: “Input string was not in a correct format.”
 At line:1 char:6
 + $array <<<< += “Hello”

Arrays are typically polymorphic: you can store any type of value you want in any element. PowerShell automatically selects the
appropriate type for each element. If you want to limit the type of data that can be stored in an array, use “strong typing” and
predefine a particular type. You should specify the desired variable type in square brackets. You also specify an open and closed
square bracket behind the variable type because this is an array and not a normal variable:

In the example, $array was defined as an array of the Integer type. Now, the array is able to store only whole numbers. If you try to
store values in it that cannot be turned into whole numbers, an error will be reported.

Strongly
Typed Arrays

92

Arrays and hash tables can store as many separate elements as you like. Arrays assign a sequential index number to elements
that always begin at 0. Hash tables in contrast use a key name. That’s why every element in hash tables consists of a key-value
pair.

You create new arrays with @(Element1, Element2, ...). You can also leave out @() for arrays and only use the comma operator.
You create new hash tables with @{key1=value1;key2=value2; ...). @{} must always be specified for hash tables. Semi-colons by
themselves are not sufficient to create a new hash table.

You can address single elements of an array or hash able by using square brackets. Specify either the index number (for arrays)
or the key (for hash tables) of the desired element in the square brackets. Using this approach you can select and retrieve several
elements at the same time.

Summary

93

The PowerShell pipeline chains togeth-
er a number of commands similar to a
production assembly. So, one command
hands over its result to the next, and at
the end, you receive the result.

Chapter 5.
Arrays and Hashtables

Topics Covered:

· Using the PowerShell Pipeline
 · Object-oriented Pipeline
 ·Text Not Converted Until the End
 · Table 5.1: Typical pipeline cmdlets and functions
 · Streaming: Real-time Processing or Blocking Mode?
 · “Blocking” Pipeline Commands
 · Converting Objects into Text
 · Making Object Properties Visible
 · Formatting Pipeline Results
 · Displaying Particular Properties
 · Using Wildcard Characters
 · Scriptblocks and “Aggregate” Properties
 · Changing Column Headings
 · Optimizing Column Width
· Sorting and Grouping Pipeline Results
 · Sort Object and Hash Tables
 · Grouping Information
 · Using Grouping Expressions
· Filtering Pipeline Results
 · Limiting Number of Objects
· Analyzing and Comparing Results
 · Statistical Calculations
· Exporting Pipeline Results
 · Suppressing Results
 · HTML Outputs

Using the
PowerShell Pipeline
Command chains are really nothing new. The old console was able to forward (or “pipe”) the results of a command to the next with the
“pipe” operator “|”. One of the more known usages was to pipe data to the tool more, which would then present the data screen page
by screen page:

In contrast to the traditional concept of text piping, the PowerShell pipeline will take an object-oriented approach and implement it in
real time. Have a look:

It returns an HTML report on the windows directory contents sorted by file size. All of this can start with a Dir command, which then
passes its result to Sort-Object. The sorted result will then get limited to only the properties you want in the report. ConvertTo-Html will
convert the objects to HTML, which is then written to a file.

Dir | more

Dir | Sort-Object Length | Select-Object Name, Length |
ConvertTo-Html | Out-File report.htm
.\report.htm

What you see here is a true object-oriented pipeline so the results from a command remain rich objects. Only at the end of the
pipeline will the results be reduced to text or HTML or whatever you choose for output.

Take a look at Sort-Object. It will sort the directory listing by file size. If the pipeline had simply fed plain text into Sort-Object, you
would have had to tell Sort-Object just where the file size information was to be found in the raw text. You would also have had to
tell Sort-Object to sort this information numerically and not alphabetically. Not so here. All you need to do is tell Sort-Object which
object’s property you want to sort. The object nature tells Sort-Object all it needs to know: where the information you want to sort
is found and whether it is numeric or letters.

You only have to tell Sort-Object which object’s property to use for sorting because PowerShell will send results as rich .NET
objects through the pipeline. Sort-Object does the rest automatically. Simply replace Length with another object’s property, such
as Name or LastWriteTime, to sort according to these criteria. Unlike text, information in an object is clearly structured: this is a
crucial PowerShell pipeline advantage.

The PowerShell pipeline is always used, even when you provide only a single command. PowerShell will attach to your input the
cmdlet Out-Default, which converts the resulting objects into text at the end of the pipeline.

Object-oriented Pipeline

Text Not Converted Until the End

95

Even a simple Dir command is appended internally and converted into a pipeline command:

Of course, the real pipeline benefits show only when you start adding more commands. The chaining of several commands will
allow you to use commands like Lego building blocks to assemble a complete solution from single commands. The following
command will output only a directory’s text files listing in alphabetical order:

The cmdlets in Table 5.1 have been specially developed for the pipeline and the tasks frequently performed in it. They will all be
demonstrated in the following pages of this chapter.

Dir $env:windir | Out-Default

Dir $env:windir *.txt | Sort-Object

Dir $env:windir | Sort-Object | notepad

Dir $env:windir | Sort-Object | Out-File result.txt; notepad result.txt

Just make sure that the commands you use in a pipeline actually do process information from the pipeline. While it is
technically OK, the following line is really useless because notepad.exe cannot process pipeline results:

If you’d like to open pipeline results in an editor, you can put the results in a file first and then open the file with the editor

Note

Cmdlet/Function Description

Compare-Object Compares two objects or object collections and marks their differences

ConvertTo-Html	 Converts objects into HTML code

Export-Clixml	 Saves objects to a file (serialization)

Export-Csv	 Saves objects in a comma-separated values file

ForEach-Object	 Returns each pipeline object one after the other

Format-List	 Outputs results as a list

Format-Table	 Outputs results as a table

Format-Wide	 Outputs results in several columns

Get-Unique	 Removes duplicates from a list of values

Group-Object	 Groups results according to a criterion

Import-Clixml	 Imports objects from a file and creates objects out of them (deserialization)

Measure-Object	 Calculates the statistical frequency distribution of object values or texts

more	 Returns text one page at a time

Out-File	 Writes results to a file

Out-Host	 Outputs results in the console

Out-Host -paging	 Returns text one page at a time

Out-Null	 Deletes results

Out-Printer	 Sends results to printer

Out-String	 Converts results into plain text

96

Cmdlet/Function Description

Select-Object	 Filters properties of an object and limits number of results as requested

Sort-Object	 Sorts results

Tee-Object	 Copies the pipeline’s contents and saves it to a file or a variable

Where-Object	 Filters results according to a criterion

Table 5.1: Typical pipeline cmdlets and functions

When you combine several commands in a pipeline, you’ll want to understand when each separate command will actually be
processed: consecutively or at the same time? The pipeline will process the results in real time, at least when the commands
chained together in the pipeline support real-time processing. That’s why there are two pipeline modes:

· Sequential (slow) mode: In sequential mode, pipeline commands are executed one at a time. So the command’s results are
passed on to the next one only after the command has completely performed its task. This mode is slow and hogs memory
because results are returned only after all commands finish their work and the pipeline has to store the entire results of each
command. The sequential mode basically corresponds to the variable concept that first saves the result of a command to a
variable before forwarding it to the next command.

· Streaming Mode (quick): The streaming mode immediately processes each command result. Every single result is passed
directly onto the subsequent command. It will rush through the entire pipeline and is immediately output. This quick mode saves
memory because results are output while the pipeline commands are still performing their tasks, and only one element is travelling
the pipeline at a time. The pipeline doesn’t have to store all of the command’s results, but only one single result at a time.

Sorting can only take place when all results are available. That is why Sort-Object is an example of a “blocking” pipeline
command, which will first collect all data before it hands over the sorted result to the next command. This also means there can be
long processing times and it can even cause instability if you don’t pay attention to memory requirements:

Streaming: Real-time
Processing or Blocking Mode?

“Blocking” Pipeline Commands

Attention: danger!
Dir C:\ -recurse | Sort-Object

If you execute this example, you won’t see any signs of life from PowerShell for a long time. If you let the command run
too long, you may even run out of memory.

Here Dir returns all files and directors on your drive C:\. These results are passed by the pipeline to Sort-Object, and
because Sort-Object can only sort the results after all of them are available, it will collect the results as they come in.
Those results eventually block too much memory for your system to handle. The two problem areas in sequential mode
are:

Important

97

First problem: You won’t see any activity as long as data is being collected. The more data that has to be acquired, the
longer the wait time will be for you. In the above example, it can take several minutes.

Second problem: Because enormous amounts of data have to be stored temporarily before Sort-Object can process
them, the memory space requirement is very high. In this case, it’s even higher so that the entire Windows system will
respond more and more clumsily until finally you won’t be able to control it any longer.

That’s not all. In this specific case, confusing error messages may pile up. If you have Dir output a complete recursive
folder listing, it may encounter sub-directories where you have no access rights. While Sort-Object continues to collect
results (so no results appear), error messages are not collected by Sort-Object and appear immediately. Error messages
and results get out of sync and may be misinterpreted.

Tip: Use Out-Host -Paging instead of more! Out-Host is a true PowerShell cmdlet and will support streaming:

 Dir c:\ -recurse | Out-Host -paging

Important

Tip

Whether a command supports streaming is up to the programmer. For Sort-Object, there are technical reasons why this command
must first wait for all results. Otherwise, it wouldn’t be able to sort the results. If you use commands that are not designed for
PowerShell then their authors had no way to implement the special demands of PowerShell. For example, it will work if you use
the traditional command more.com to output information one page at a time, but more.com is also a blocking command that
could interrupt pipeline streaming:

But also genuine PowerShell cmdlets, functions, or scripts can block pipelines if the programmer doesn’t use streaming.
Surprisingly, PowerShell developers forgot to add streaming support to the integrated more function. This is why more essentially
doesn’t behave much differently than the ancient more.com command:

If the preceding command can execute its task quickly,
you may not notice that it can be a block:
Dir | more.com

If the preceding command requires much time,
its blocking action may cause issues:
Dir c:\ -recurse | more.com

If the preceding command can execute its task quickly, you may not notice that it can be
a block:
Dir | more.com
If the preceding command requires much time, its blocking action may cause issues:
Dir c:\ -recurse | more.com

98

Converting
Objects into Text
At the end of a day, you want commands to return visible results, not objects. So, while results stay rich data objects while traveling the
pipeline, at the end of the pipeline, they must be converted into text. This is done by (internally) adding Out-Default to your input. The
following commands are identical:

Out-Default will transform the pipeline result into visible text. To do so, it will first call Format-Table (or Format-List when there are more
than five properties to output) internally, followed by Out-Host. Out-Host will output the text in the console. So, this is what happens
internally:

Dir

Dir | Out-Default

Dir | Format-Table *

PSPat PSPar PSChi PSDri PSPro PSIsC Mode Name Pare Exis Root Full Exte Crea Crea Last Last Last Last Attr

h entPa ldNam ve vider ontai nt ts Name nsio tion tion Acce Acce Writ Writ ibut

 th e ner n Time Time ssTi ssTi eTim eTim es

 Utc me meUt e eUtc

 c

----- ----- ----- ----- ----- ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

Mi... Mi... Ap... C Mi... True d... A... T... True C:\ C... 2... 2... 2... 2... 2... 2... ...y

Mi... Mi... Ba... C Mi... True d... B... T... True C:\ C... 2... 2... 2... 2... 2... 2... ...y

Mi... Mi... Co... C Mi... True d... C... T... True C:\ C... 1... 1... 1... 1... 1... 1... ...y

Mi... Mi... Debug C Mi... True d... D... T... True C:\ C... 2... 2... 2... 2... 2... 2... ...y

Mi... Mi... De... C Mi... True d... D... T... True C:\ C... 1... 1... 3... 3... 3... 3... ...y

Dir | Format-Table | Out-Host

To really see all the object properties and not just the ones that PowerShell “thinks” are important, you can use Format-Table and
add a “*” to select all object properties.

You now get so much information that columns shrink to an unreadable format.

Making Object Properties Visible

99

For example, if you’d prefer not to reduce visual display because of lack of space, you can use the -Wrap parameter, like
this:

Tip

Still, the horizontal table design is unsuitable for more than just a handful of properties. This is why PowerShell will use Format-
List, instead of Format-Table, whenever there are more than five properties to display. You should do the same:

You will now see a list of several lines for each object’s property. For a folder, it might look like this:

A file has slightly different properties:

Dir | Format-Table * -wrap

	

Dir | Format-List *

PSPath : Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner\Music
PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner
PSChildName : Music

PSDrive : C

PSProvider : Microsoft.PowerShell.Core\FileSystem
PSIsContainer : True

Mode : d-r--

Name : Music

Parent : Tobias Weltner

Exists : True

Root : C:\
FullName : C:\Users\Tobias Weltner\Music
Extension :

CreationTime : 13.04.2007 01:54:53

CreationTimeUtc : 12.04.2007 23:54:53

LastAccessTime : 10.05.2007 21:37:26

LastAccessTimeUtc : 10.05.2007 19:37:26

LastWriteTime : 10.05.2007 21:37:26

LastWriteTimeUtc : 10.05.2007 19:37:26

Attributes : ReadOnly, Directory

	

PSPath : Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner\views.PS1
PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner
PSChildName : views.PS1
PSDrive : C

PSProvider : Microsoft.PowerShell.Core\FileSystem
PSIsContainer : False

Mode : -a---
Name : views.PS1
Length : 4045
DirectoryName : C:\Users\Tobias Weltner

100

Directory : C:\Users\Tobias Weltner
IsReadOnly : False

Exists : True

FullName : C:\Users\Tobias Weltner\views.PS1
Extension : .PS1
CreationTime : 18.09.2007 16:30:13

CreationTimeUtc : 18.09.2007 14:30:13

LastAccessTime : 18.09.2007 16:30:13

LastAccessTimeUtc : 18.09.2007 14:30:13

LastWriteTime : 18.09.2007 16:46:12

LastWriteTimeUtc : 18.09.2007 14:46:12

Attributes : Archive

Get-Command -verb format

CommandType Name Definition

----------- ---- ----------

Cmdlet Format-Custom Format-Custom [[-Property] <Object[]>] [-De...

Cmdlet Format-List Format-List [[-Property] <Object[]>] [-Grou...

Cmdlet Format-Table Format-Table [[-Property] <Object[]>] [-Aut...

Cmdlet Format-Wide Format-Wide [[-Property] <Object>] [-AutoSi...

You will now see a list of several lines for each object’s property. For a folder, it might look like this:

Transforming objects produced by the pipeline is carried out by formatting cmdlets. There are four choices:

To accomplish this, you type the property that you want to see and not just an asterisk behind the cmdlet. If you do not want to
explicitly use a table or list format, it is considered best practice to use Select-Object rather than Format-* because Select-Object
will automatically determine the best formatting and will also return objects that can be processed by subsequent cmdlets. When
you use Format-* cmdlets, objects are converted into formatting information, which can only be interpreted by Out-* cmdlets
which is why Format-* cmdlets must be used only at the end of your pipeline.

The next instruction will retrieve you a directory listing with only Name and Length. Because sub-directories don’t have a property
called Length, you will see that the Length column for the sub-directory is empty:

These formatting cmdlets are not just useful for converting all of an object’s properties into text, but you can also select the
properties you want to see.

Formatting Pipeline Results

Displaying Particular Properties

101

Dir | Select-Object Name, Length

Name Length

---- ------

Sources

Test

172.16.50.16150.dat 16

172.16.50.17100.dat 16

output.htm 10834
output.txt 1338

Dir | Select-Object name, { [int]($_.Length/1KB) }

Name [int]($_.Length/1KB)

---- ---------------------

output.htm 11
output.txt 13
backup.pfx 2
cmdlet.txt 23

Get-WmiObject Win32_VideoController | Select-Object *resolution*
 CurrentHorizontalResolution CurrentVerticalResolution

 --------------------------- -------------------------
 1680 1050

Wildcard characters are allowed. So, the next command will get you information about your video controller and output all
properties that have a resolution keyword:

Script blocks can be used as columns as they basically act as PowerShell instructions included in brackets that work like synthetic
properties to calculate their value. Within a script block, the variable $_ will contain the actual object. The script block could
convert the Length property into kilobytes if you’d like to output file sizes in kilobytes rather than bytes:

Or maybe you’d like your directory listing to show how many days have passed since a file or a folder was last modified. By using
the New-TimeSpan cmdlet, you can calculate how much time has elapsed up to the current date. To see how this works, you can
look at the line below as an example that calculates the time difference between January 1, 2000, and the current date:/p>

Using Wildcard Characters

Scriptblocks and
“Aggregate” Properties

102

Or maybe you’d like your directory listing to show how many days have passed since a file or a folder was last modified. By using
the New-TimeSpan cmdlet, you can calculate how much time has elapsed up to the current date. To see how this works, you can
look at the line below as an example that calculates the time difference between January 1, 2000, and the current date:/p>

Use this script block to output how many days have elapsed from the LastWriteTime property up to the current date and to read it
out in its own column:

Dir would then return a sub-directory listing that shows how old the file is in days:

Directory : C:\Users\Tobias Weltner
IsReadOnly : False

Exists : True

FullName : C:\Users\Tobias Weltner\views.PS1
Extension : .PS1
CreationTime : 18.09.2007 16:30:13

CreationTimeUtc : 18.09.2007 14:30:13

LastAccessTime : 18.09.2007 16:30:13

LastAccessTimeUtc : 18.09.2007 14:30:13

LastWriteTime : 18.09.2007 16:46:12

LastWriteTimeUtc : 18.09.2007 14:46:12

Attributes : Archive

New-TimeSpan “01/01/2000”

Days : 4100

Hours : 21

Minutes : 13

Seconds : 15

Milliseconds : 545

Ticks : 3543163955453834

TotalDays : 4100,8842077012

TotalHours : 98421,2209848287

TotalMinutes : 5905273,25908972

TotalSeconds : 354316395,545383

TotalMilliseconds : 354316395545,383

{(New-TimeSpan $_.LastWriteTime).Days}

Dir | Select-Object Name, Length, {(New-TimeSpan $_.LastWriteTime).Days}
Name Length (New-TimeSpan $_.LastWriteTime (Get-Date)).Days
---- ------ ---

Application data 61

Backup 55

Contacts 158

Debug 82

Desktop 19

Documents 1

(...)

103

$column = @{Expression={ [int]($_.Length/1KB) }; Name=”KB” }
Dir | Select-Object name, $column
Name KB
---- --
output.htm 11
output.txt 13
backup.pfx 2
cmdlet.txt 23

$column = @{Expression={ [int]($_.Length/1KB) }; Label=”KB” }
Dir | Format-Table name, $column -AutoSize
Name KB

---- --
output.htm 11
output.txt 13
backup.pfx 2
cmdlet.txt 23

When you use synthetic properties, you will notice that column headings look strange because PowerShell puts code in them that
computes the column contents. However, after reading the last chapter, you now know that you can use a hash table to format
columns more effectively and that you can also rename them:

Because the pipeline processes results in real time, PowerShell cannot know how wide of a space the column elements will
occupy. As a result, it will tend to be generous in sizing columns. If you specify the -AutoSize parameter, Format-Table will collect
all results first before setting the maximum width for all elements. You can optimize output, but the results will no longer be output
in real time:

Changing Column Headings

Optimizing Column Width

Sorting and Grouping
Pipeline Results
Using the cmdlets Sort-Object und Group-Object, you can sort and group other command results. In the simplest scenario, you can
just append Sort-Object to a pipeline command and your output will already be sorted. It’s really very simple:

Dir $env:windir | Sort-Object

104

When you do that, Sort-Object will select the property it uses for sorting. It’s better to choose the sorting criterion yourself as every
object’s property may be used as a sorting criterion. For example, you could use one to create a descending list of a sub-directo-
ry’s largest files:

Sort-Object can sort by more than one property at the same time. For example, if you’d like to sort all the files in a folder by type first
(Extension property) and then by name (Name property), you can specify both properties:

Dir $env:windir | Sort-Object -property Length -descending

Dir | Sort-Object Extension, Name

Dir | Sort-Object @{expression=”Length”;Descending=$true},@{expression=”Name”;
Ascending=$true}

Get-Service | Group-Object Status

Count Name Group

----- ---- -----
 91 Running {AeLookupSvc, AgereModemAudio, Appinfo, Ati External Event Utility...}

 67 Stopped {ALG, AppMgmt, Automatic LiveUpdate - Scheduler, BthServ...}

You must know which properties are available to use Sort-Object and all the other following cmdlets. In the last section,
you learned how to do that. Send the result of a cmdlet to Select-Object *, and you’ll get a list of all properties available
that you can use for sorting:

Tip

Dir $env:windir | Select-Object *

Sort-Object can use hash tables to better control the sorting. Let’s assume that you want to sort a folder by file size and name.
While the file size should be sorted in descending order, file names should be sorted in ascending order. You can solve this
problem by passing Sort-Object to a hash table (see Chapter 4).

Group-Object works by grouping objects based on one or more properties and then counting the groups. You will only need to
specify the property you want to use as your grouping option. The next line will return a status overview of services:

The hash table will allow you to append additional information to a property so you can separately specify for each property your
preferred sorting sequence.

Sort Object and Hash Tables

Grouping Information

105

The number of groups will depend only on how many different values are found in the property specified in the grouping operation.
The results’ object contains the properties Count, Name, and Group. Services are grouped according to the desired criteria in the
Group property. The following will show you how to obtain a list of all currently running services:

In a file system, Group-Object could group files based on type:

$result = Get-Service | Group-Object Status
$result[0].Group

Dir $env:windir | Group-Object Extension
Dir $env:windir | Group-Object Extension | Sort-Object Count -descending
Count Name Group

----- ---- -----
 22 {Application data, Backup, Contacts, Debug...}
 16 .ps1 {filter.ps1, findview.PS1, findview2.PS1, findview3.PS1...}
 12 .txt {output.txt, cmdlet.txt, ergebnis.txt, error.txt...}
 4 .csv {ergebnis.csv, history.csv, test.csv, test1.csv}
 3 .bat {ping.bat, safetycopy.bat, test.bat}
 2 .xml {export.xml, now.xml}
 2 .htm {output.htm, report.htm}

Dir | Group-Object {$_.Length -gt 100KB}

Count Name Group

----- ---- -----
 67 False {Application data, Backup, Contacts, Debug...}

 2 True {export.xml, now.xml} in the column Count is reported which

Dir | Group-Object {$_.name.SubString(0,1).toUpper()}
Count Name Group

----- ---- -----
 4 A {Application data, alias1, output.htm, output.txt}
 2 B {Backup, backup.pfx}
 2 C {Contacts, cmdlet.txt}
 5 D {Debug, Desktop, Documents, Downloads...}

 5 F {Favorites, filter.ps1, findview.PS1, findview2.PS1...}
 3 L {Links, layout.lxy, liste.txt}
 3 M {MSI, Music, meinskript.ps1}

The criteria used to group objects can also be calculated. The next example uses a script block which returns True if the file size
exceeds 100 KB or False otherwise. All files larger than 100KB are in the True group:.

The script block is not limited to returning True or False. The next example will use a script block that returns a file name’s first
letter. The result: Group-Object will group the sub-directory contents by first letters:

Using Grouping Expressions

106

 3 P {Pictures, p1.nrproj, ping.bat}
 7 S {Saved Games, Searches, Sources, SyntaxEditor...}

 15 T {Test, test.bat, test.csv, test.ps1...}
 2 V {Videos, views.PS1}
 1 [{[test]}

 1 1 {1}
 4 E {result.csv, result.txt, error.txt, export.xml}
 4 H {mainscript.ps1, help.txt, help2.txt, history.csv}
 1 I {info.txt}
 2 N {netto.ps1, now.xml}
 3 R {countfunctions.ps1, report.htm, root.cer}
 2 U {unsigned.ps1, .ps1}

 Dir | Group-Object {$_.name.SubString(0,1).toUpper()} | ForEach-Object { ($_.Name)*7;
 “=======”; $_.Group}
(...)

BBBBBBB

=======

d---- 26.07.2007 11:03 Backup
-a--- 17.09.2007 16:05 1732 backup.pfx
CCCCCCC

=======

d-r-- 13.04.2007 15:05 Contacts
-a--- 13.08.2007 13:41 23586 cmdlet.txt
DDDDDDD

=======

d---- 28.06.2007 18:33 Debug
d-r-- 30.08.2007 15:56 Desktop
d-r-- 17.09.2007 13:29 Documents
d-r-- 24.09.2007 11:22 Downloads
-a--- 26.04.2007 11:43 1046 drive.vbs
(...)

Get-Process | Group-Object -property Company -noelement

Count Name

----- ----

 50

 1 AuthenTec, Inc.

 2 LG Electronics Inc.

 1 Symantec Corporation

 2 ATI Technologies Inc.

 30 Microsoft Corporation

 1 Adobe Systems, Inc.

 1 BIT LEADER

 1 LG Electronics

 1 Intel Corporation

This way, you can even create listings that are divided into sections:

You can use the parameter -NoElement if you don’t need the grouped objects and only want to know which groups exist. This will
save a lot of memory:

107

 2 Apple Inc.

 1 BlazeVideo Company

 1 ShellTools LLC

 2 Infineon Technologies AG

 1 Just Great Software

 1 Realtek Semiconductor

 1 Synaptics, Inc.

Filtering
Pipeline Results
If you’re only interested in certain objects, you can use Where-Object to filter results. For example, you can filter them based on their
Status property if you want to list only running services.

Where-Object takes a script block and evaluates it for every pipeline object. The current object that is travelling the pipeline is found in
$_. So Where-Object really works like a condition (see Chapter 7): if the expression results in $true, the object will be let through.

Here is another example of what a pipeline filter could look like:

Get-Service | Where-Object { $_.Status -eq “Running” }
Status Name DisplayName

------ ---- -----------

Running AeLookupSvc Applicationlookup

Running AgereModemAudio Agere Modem Call Progress Audio

Running Appinfo Applicationinformation

Running AppMgmt Applicationmanagement

Running Ati External Ev... Ati External Event Utility

Running AudioEndpointBu... Windows-Audio-Endpoint-building

Running Audiosrv Windows-Audio

Running BFE Basis filter Engine

Running BITS Intelligent Background Transmiss...

(...)

Get-WmiObject Win32_Service | Where-Object {($_.Started -eq $false) -and ($_.StartMode -eq
 “Auto”)} | Format-Table

 ExitCode Name ProcessId StartMode State Status

 -------- ---- --------- --------- ----- ------

 0 Automatic Li... 0 Auto Stopped OK

 0 ehstart 0 Auto Stopped OK

 0 LiveUpdate Notic... 0 Auto Stopped OK

 0 WinDefend 0 Auto Stopped OK

108

List the five largest files in a directory:
Dir | Sort-Object Length -descending | Select-Object -first 5

List the five longest-running processes:
Get-Process | Sort-Object StartTime | Select-Object -last 5 |
 Select-Object ProcessName, StartTime

Dir $env:windir | Measure-Object Length -average -maximum -minimum -sum
Count : 50

Average : 36771,76

Sum : 1838588

Maximum : 794050

Minimum : 0

Property : Length

Get-Process | Sort-Object StartTime -ea 0 | Select-Object -last 5 |
Select-Object ProcessName, StartTime

Select-Object has a dual purpose. It can select the columns (properties) you want to see, and it can show only the first or the last
results.

Using the Measure-Object cmdlet, you can get statistic information. For example, if you want to check file sizes, let Dir give you a
directory listing and then examine the Length property:

If you aren’t logged on with administrator privileges, you may not retrieve the information from some processes. However, you can
avoid exceptions by adding -ErrorAction SilentlyContinue (shortcut: -ea 0):

Limiting Number of Objects

Statistical Calculations

Analyzing and
Comparing Results
Using the cmdlets Measure-Object and Compare-Object, you can measure and evaluate PowerShell command results. For example,
Measure-Object will allow you to determine how often particular object properties are distributed. Compare-Object will enable you to
compare before-and-after snapshots.

109

Get-Content $env:windir\windowsupdate.log | Measure-Object -character -line -word

Measure-Object also accepts text files and discovers the frequency of characters, words, and lines in them:

Get-Process | Format-Table -AutoSize | Out-File $env:temp\somefile.txt -Width 1000

Dir | Out-File -encoding Dunno

Out-File : Cannot validate argument “Dunno” because it does not belong to the set

 “unicode, utf7, utf8, utf32, ascii, bigendianunicode, default, oem”.

Get-Process | Export-CSV -UseCulture -NoTypeInformation -Encoding UTF8

 $env:temp:\report.csv
Invoke-Item $env:temp\report.csv

Exporting
Pipeline Results
If you’d like to save results into a text file or print it, rather than outputting it into the console, append Format-* | Out-* to any Power-
Shell command:

Out-File will support the parameter -Encoding, which you can use to set the output format If you don’t remember which encoding for-
mats are allowed. Just specify an invalid value and then the error message will tell you which values are allowed:

Out-* cmdlets turn results into plain text so you are reducing the richness of your results (Out-GridView is the only exception to the rule
which displays the results in an extra window as a mini-spreadsheet).

Export it instead and use one of the xport-* cmdlets to preserve the richness of your results. For example, to open results in Microsoft
Excel, do this:

This command not only creates a new directory but also returns the new
directory:

md testdirectory

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner
Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 19.09.2007 14:31 testdirectory

rm testdirectory

You can send the output to Out-Null if you want to suppress command output:

Suppressing Results

110

Here the command output is sent to “nothing”:
md testdirectory | Out-Null
rm testdirectory

That matches the following redirection:
md testdirectory > $null
rm testdirectory

Get-Process | ConvertTo-Html | Out-File output.hta
.\output.hta
Get-Process | Select-Object Name, Description | ConvertTo-Html -title “Process Report” |
 Out-File output.hta
.\output.hta

If you’d like, PowerShell can also pack its results into (rudimentary) HTML files. Converting objects into HTML formats is done by
ConvertTo-Html:

HTML
Outputs

111

Topics Covered:
· Objects = Properties + Methods
 · Creating a New Object
 · Adding Properties
 · Adding Methods
· Properties: What an Object “Is”
 · Properties Containing Objects
 · Read-Only and Read-Write Properties
 · Table 6.1: Properties of the RawUI object 	
 · Property Types
 · Listing All Properties
· Methods: What an Object “Can Do”
 · Eliminating “Internal” Methods
 · Get_ and Set_ Methods
 · Standard Methods
	 · Table 6.2: Standard methods of a .NET object
 · Calling a Method
 · Call Methods with Arguments
 · Which Arguments are Required?
 · Several Method “Signatures”
 · Playing with PromptForChoice
· Working with Real-Life Objects
 · Storing Results in Variables
 · Using Object Properties
 · PowerShell-Specific Properties
 · Table 6.3: Different property types
 · Using Object Methods
 · Different Method Types
	 · Table 6.4: Different types of methods

· Using Static Methods
 · Table 6.5: Mathematical functions from the
 [Math] library
 · Finding Interesting .NET Types
 · Converting Object Types
 · Using Static Type Members
 · Using Dynamic Object Instance Members 	 ·
· Creating New Objects
 · Creating New Objects with New-Object
 · Using Constructors
 · New Objects by Conversion
 · Loading Additional Assemblies: Improved Internet
 Download
 · Call Methods with Arguments
 · Using COM Objects
 · Which COM Objects Are Available?
 · How Do You Use COM Objects?
· Summary

In this chapter, you will learn what
objects are and how to get your hands
on PowerShell objects before they get
converted to simple text.

Chapter 6.
Working with Objects

Objects = Properties +
Methods
In real life, you already know what an object is: everything you can touch. Objects in PowerShell are similar. Let’s turn a typical re-
al-world object, like a pocketknife, into a PowerShell object.

How would you describe this object to someone, over the telephone? You would probably carefully examine the object and then de-
scribe what it is and what it can do:

 · Properties: A pocketknife has particular properties, such as its color, manufacturer, size, or number of blades. The object is red, 	
 weights 55 grams, has three blades, and is made by the firm Idera. So properties< describe what an object is.

 · Methods: In addition, you can do things with this object, such as cut, turn screws, or pull corks out of wine bottles. The object 	
	 can cut, screw, and remove corks. Everything that an object can is called its methods.

In the computing world, an object is very similar: its nature is described by properties, and the actions it can perform are called its
methods. Properties and methods are called members.

$pocketknife = New-Object Object

Adding a new property:
Add-Member -MemberType NoteProperty -Name Color-Value Red -InputObject $pocketknife

$pocketknife
Color

Red

$pocketknife

Let’s turn our real-life pocketknife into a virtual pocketknife. Using New-Object, PowerShell can generate new objects, even a
virtual pocketknife. First, you will need a new and empty object:

Next, let’s start describing what our object is. To do that, you can add properties to the object.

You can use the Add-Member cmdlet to add properties. Here, you added the property color with the value red to the object
$pocketknife. If you call for the object now, it suddenly has a property telling the world that its color is red:

This new object is actually pretty useless. If you call for it, PowerShell will return “nothing”:

Creating a Object

Adding Properties

113

You can then add more properties to describe the object even better. This time, we use positional parameters to shorten the code nec-
essary to add members to the object:

By now, you’ve described the object in $pocketknife with a total of four properties. If you output the object in $pocketknife in the
PowerShell console, PowerShell will automatically convert the object into readable text:

You will now get a quick overview of its properties when you output the object to the console. You can access the value of a specific
property by either using Select-Object with the parameter -expandProperty, or add a dot, and then the property name:

$pocketknife | Add-Member NoteProperty Weight 55
$pocketknife | Add-Member NoteProperty Manufacturer Idera
$pocketknife | Add-Member NoteProperty Blades 3

Show all properties of the object all at once:
$pocketknife
Color Weight Manufacturer Blades

----- ------- ---------- -------

Red 55 Idera 3

$pocketknife
Color Weight Manufacturer Blades

----- ------- ---------- -------

Red 55 Idera 3

Display a particular property:
$pocketknife | Select-Object -expandProperty Manufacturer
$pocketknife.manufacturer

Adding new methods:
$pocketknife | Add-Member ScriptMethod cut { “I’m whittling now” }
$pocketknife | Add-Member ScriptMethod screw { “Phew...it’s in!” }

$pocketknife | Add-Member ScriptMethod corkscrew { “Pop! Cheers!” }

With every new property you added to your object, $pocketknife has been gradually taking shape, but it still really can’t do any-
thing. Properties only describe what an object is, not what it can do.

The actions your object can do are called its methods. So let’s teach your object a few useful methods:

Again, you used the Add-Member cmdlet, but this time you added a method instead of a property (in this case, a ScriptMethod).
The value is a scriptblock marked by brackets, which contains the PowerShell instructions you want the method to perform. If you
output your object, it will still look the same because PowerShell only visualizes object properties, not methods:

Adding Methods

114

You can add a dot and then the method name followed by two parentheses to use any of the three newly added methods. They are
part of the method name, so be sure to not put a space between the method name and the opening parenthesis. Parentheses formally
distinguishes properties from methods.

For example, if you’d like to remove a cork with your virtual pocketknife, you can use this code:

You just received a method description. What’s interesting about this is mainly the OverloadDefinitions property. As you’ll see
later, it reveals the exact way to use a command for any method. In fact, the OverloadDefinitions information is in an additional
object. For PowerShell, absolutely everything is an object so you can store the object in a variable and then specifically ask the
OverloadDefinitions property for information:

The “virtual pocketknife” example reveals that objects are containers that contain data (properties) and actions (methods).

Our virtual pocketknife was a somewhat artificial object with no real use. Next, let’s take a look at a more interesting object: Power-
Shell! There is a variable called $host which represents your PowerShell host.

There are just two important rules: Properties describe an object. And object properties are automatically turned into text when you
output the object to the console. That’s enough to investigate any object. Check out the properties in $host!

Your object really does carry out the exact script commands you assigned to the corkscrew() method. So, methods perform actions,
while properties merely provide information. Always remember to add parentheses to method names. If you forget them, something
interesting like this will happen:

$pocketknife.corkscrew()
Pop! Cheers!

If you don’t use parentheses, you’ll retrieve information on a method:
$pocketknife.corkscrew
Script : “Pop! Cheers!”
OverloadDefinitions : {System.Object corkscrew();}
MemberType : ScriptMethod
TypeNameOfValue : System.Object
Value : System.Object corkscrew();
Name : corkscrew
IsInstance : True

Information about a method is returned in an object of its own:
$info = $pocketknife.corkscrew
$info.OverloadDefinitions
System.Object corkscrew();

Properties: What an
Object “Is”

115

The object stored in the variable $host apparently contains seven properties. The properties’ names are listed in the first column. So, if
you want to find out which PowerShell version you’re using, you could access and return the Version property:

It works—you get back the PowerShell host version. The version isn’t displayed as a single number. Instead, PowerShell displays four
columns: Major, Minor, Build, and Revision. Whenever you see columns, you know these are object properties that PowerShell has just
converted into text. So, the version in itself is again a special object designed to store version numbers. Let’s check out the data type
that the Version property uses:

Knowing an object type is very useful because once you know there is a type called System. Version, you can use it for your own
purposes as well. Try to convert a simple string of your choice into a rich version object! To do that, simply make sure the string
consists of four numbers separated by dots (the typical format for versions), then make PowerShell convert the string into a System.
Version type. You can convert things by adding the target type in square brackets in front of the string:

The version is not stored as a String object but as a System. Version object. This object type is perfect for storing versions, allowing
you to easily read all details about any given version:

$Host
Name : ConsoleHost

Version : 1.0.0.0

InstanceId : e32debaf-3d10-4c4c-9bc6-ea58f8f17a8f
UI : System.Management.Automation.Internal.Host.InternalHostUserInterface
CurrentCulture : en-US

CurrentUICulture : en-US

PrivateData : Microsoft.PowerShell.ConsoleHost+ConsoleColorProxy

$Host.Version
Major Minor Build Revision

----- ----- ----- --------

1 0 0 0

$version = $Host.Version
$version.GetType().FullName
System.Version

[System.Version]’12.55.3.28334’
Major Minor Build Revision

----- ----- ----- --------

12 55 3 28334

$Host.Version.Major
1

$Host.Version.Build
0

116

The CurrentCulture property is just another example of the same concept. Read this property to find out its type:

Country properties are again stored in a highly specialized type that describes a culture with the properties LCID, Name, and
DisplayName. If you want to know which international version of PowerShell you are using, you can read the DisplayName property:

Likewise, you can convert any suitable string into a CultureInfo-object. Try this if you wanted to find out details about the ‘de-DE’
locale:

You can also convert the LCID into a CultureInfo object by converting a suitable number:

$Host.CurrentCulture
LCID Name DisplayName

---- ---- -----------

1033 en-US English (United States)

$Host.CurrentCulture.GetType().FullName
System.Globalization.CultureInfo

[System.Globalization.CultureInfo]’de-DE’
LCID Name DisplayName

---- ---- -----------

1031 de-DE German (Germany)

[System.Globalization.CultureInfo]1033
LCID Name DisplayName

---- ---- -----------

1033 en-US English (United States)

$Host.CurrentCulture.DisplayName
English (United States)
$Host.CurrentCulture.DisplayName.GetType().FullName
System.String

$Host
Name : ConsoleHost

Version : 1.0.0.0

InstanceId : e32debaf-3d10-4c4c-9bc6-ea58f8f17a8f

UI : System.Management.Automation.Internal.Host.InternalHostUserInterface
CurrentCulture : en-US

CurrentUICulture : en-US

PrivateData : Microsoft.PowerShell.ConsoleHost+ConsoleColorProxy

The properties of an object store data. In turn, this data is stored in various other objects.Two properties in $host seem to be spe-
cial: UI and PrivateData. When you output $host into the console, all other properties will be converted into readable text – except
for the properties UI and PrivateData:

Properties Containing Objects

117

This is because both these properties again contain an object. If you’d like to find out what is actually stored in the UI property, you
can read the property:

“RawUI” stands for “Raw User Interface” and exposes the raw user interface settings your PowerShell console uses. You can read
all of these properties, but can you also change them?

You see that the property UI contains only a single property called RawUI, in which yet another object is stored. Let’s see what sort
of object is stored in the RawUI property:

$Host.UI
RawUI

System.Management.Automation.Internal.Host.InternalHostRawUserInterface

$Host.ui.rawui
ForegroundColor : DarkYellow

BackgroundColor : DarkMagenta

CursorPosition : 0,136

WindowPosition : 0,87

CursorSize : 25

BufferSize : 120,3000

WindowSize : 120,50

MaxWindowSize : 120,62

MaxPhysicalWindowSize : 140,62

KeyAvailable : False

WindowTitle : PowerShell

$Host.ui.rawui.BackgroundColor = “Green”
$Host.ui.rawui.ForegroundColor = “White”

Can you actually change properties, too? And if you can, what happens next?

Properties need to accurately describe an object. So, if you modify a property, the underlying object has to also be modified to
reflect that change. If this is not possible, the property cannot be changed and is called “read-only.”

Console background and foreground colors are a great example of properties you can easily change. If you do, the console will
change colors accordingly. Your property changes are reflected by the object, and the changed properties still accurately describe
the object.

Type cls so the entire console adopts this color scheme.

Read-Only and
Read-Write Properties

118

Other properties cannot be changed. If you try anyway, you’ll get an error message:

Whether the console receives key press input or not, depends on whether you pressed a key or not. You cannot control that by
changing a property, so this property refuses to be changed. You can only read it.

$Host.ui.rawui.keyavailable = $true
“KeyAvailable” is a ReadOnly-property.
At line:1 char:16
+ $Host.ui.rawui.k <<<< eyavailable = $true

A value from 0 to 100 is permitted:
$Host.ui.rawui.cursorsize = 75

Values outside this range will generate an error:
$Host.ui.rawui.cursorsize = 1000
Exception setting “CursorSize”: “Cannot process “CursorSize” because the cursor
 size specified is invalid.
Parameter name: value
Actual value was 1000.”
At line:1 char:16
+ $Host.ui.rawui.c <<<< ursorsize = 1000

Property Description

ForegroundColor Text color. Optional values are Black, DarkBlue, DarkGreen, DarkCyan, DarkRed, DarkMagenta,
DarkYellow, Gray, DarkGray, Blue, Green, Cyan, Red, Magenta, Yellow, and White.

BackgroundColor Background color. Optional values are Black, DarkBlue, DarkGreen, DarkCyan, DarkRed, Dark-
Magenta, DarkYellow, Gray, DarkGray, Blue, Green, Cyan, Red, Magenta, Yellow, and White.

CursorPosition Current position of the cursor

WindowPosition Current position of the window

CursorSize	 Size of the cursor

BufferSize Size of the screen buffer

WindowSize Size of the visible window

MaxWindowSize Maximally permissible window size

MaxPhysicalWindowSize Maximum possible window size

KeyAvailable	 Makes key press input available

WindowTitle	 Text in the window title bar

Table 6.1: Properties of the RawUI object

Some properties accept numeric values. For example, the size of a blinking cursor is specified as a number from 0 to and
corresponds to the fill percentage. The next line sets a cursor size of 75%. Values outside the 0-100 numeric range will generate
an error:

Property Types

119

Other properties expect color settings. However, you cannot specify any color that comes to mind. Instead, PowerShell expects a
“valid” color and if your color is unknown, you will receive an error message listing the colors you can use:

Colors are specified as text (in quotation marks):
$Host.ui.rawui.ForegroundColor = “yellow”

Not all colors are allowed:
$Host.ui.rawui.ForegroundColor = “pink”
Exception setting “ForegroundColor”: “Cannot convert value “pink” to type
 “System.ConsoleColor” due to invalid enumeration values. Specify one of the
 following enumeration values and try again. The possible enumeration values are
 “Black, DarkBlue, DarkGreen, DarkCyan, DarkRed, DarkMagenta, DarkYellow, Gray,
 DarkGray, Blue, Green, Cyan, Red, Magenta, Yellow, White”.”
At line:1 char:16
+ $Host.ui.rawui.F <<<< oregroundColor = “pink”

If you assign an invalid value to the property ForegroundColor, the error message will list the possible values. If you assign
an invalid value to the property CursorSize, you get no hint. Why?

Every property expects a certain object type. Some object types are more specific than others. You can use Get-Member
to find out which object types a given property will expect:

$Host.ui.RawUI | Get-Member -MemberType Property

 TypeName: System.Management.Automation.Internal.Host.InternalHostRawUserInterface

Name MemberType Definition

---- ---------- ----------

BackgroundColor Property System.ConsoleColor BackgroundColor {get;set;}

BufferSize Property System.Management.Automation.Host.Size BufferSize {get;set;}

CursorPosition Property System.Management.Automation.Host.Coordinates CursorPosition {get;set;}

CursorSize Property System.Int32 CursorSize {get;set;}

ForegroundColor Property System.ConsoleColor ForegroundColor {get;set;}

KeyAvailable Property System.Boolean KeyAvailable {get;}

MaxPhysicalWindowSize Property System.Management.Automation.Host.Size MaxPhysicalWindowSize {get;}

MaxWindowSize Property System.Management.Automation.Host.Size MaxWindowSize {get;}

WindowPosition Property System.Management.Automation.Host.Coordinates WindowPosition {get;set;}

WindowSize Property System.Management.Automation.Host.Size WindowSize {get;set;}

WindowTitle Property System.String WindowTitle {get;set;}

As you can see, ForegroundColor expects a System.ConsoleColor type. This type is a highly specialized type: a list of
possible values, a so-called enumeration:

[system.ConsoleColor].IsEnum

True

Tip

120

Whenever a type is an enumeration, you can use a special .NET method called GetNames() to list the possible values
defined in that enumeration:

[System.Enum]::GetNames([System.ConsoleColor])
Black

DarkBlue

DarkGreen

DarkCyan

DarkRed

DarkMagenta

DarkYellow

Gray

DarkGray

Blue

Green

Cyan

Red

Magenta

Yellow

White

If you do not specify anything contained in the enumeration, the error message will simply return the enumeration’s
contents.

CursorSize stores its data in a System.Int32 object, which is simply a 32-bit number. So, if you try to set the cursor size
to 1,000, you are actually not violating the object boundaries because the value of 1,000 can be stored in a System.Int32
object. You get an error message anyway because of the validation code that the CursorSize property executes internally.
So, whether you get detailed error information will really depend on the property’s definition. In the case of CursorSize, you
will receive only an indication that your value is invalid, but not why.

Sometimes, a property expects a value to be wrapped in a specific object. For example, if you’d like to change the PowerShell
window size, you can use the WindowSize property. As it turns out, the property expects a new window size wrapped in an object
of type System.Management.Automation.Host.Size. Where can you get an object like that?

$Host.ui.rawui.WindowSize = 100,100
Exception setting “WindowSize”: “Cannot convert “System.Object[]”
 to “System.Management.Automation.Host.Size”.”
At line:1 char:16
+ $Host.ui.rawui.W <<<< indowSize = 100,100

There are a number of ways to provide specialized objects for properties. The easiest approach: read the existing value of a
property (which will get you the object type you need), change the result, and then write back the changes. For example,
here’s how you would change the PowerShell window size to 80 x 30 characters:

Tip

121

$value = $Host.ui.rawui.WindowSize
$value
 Width Height

 ----- ------

 110 64

$value.Width = 80
$value.Height = 30
$Host.ui.rawui.WindowSize = $value

Or, you can freshly create the object you need by using New-Object:

$value = New-Object System.Management.Automation.Host.Size(80,30)
$Host.ui.rawui.WindowSize = $value

Or in a line:

$host.ui.rawui.WindowSize = New-Object System.Management.Automation.Host.Size(80,30)

$Host | Get-Member -memberType property
Name MemberType Definition

---- ---------- ----------

CurrentCulture Property System.Globalization.CultureInfo CurrentCulture {get;}
CurrentUICulture Property System.Globalization.CultureInfo CurrentUICulture {get;}
InstanceId Property System.Guid InstanceId {get;}
Name Property System.String Name {get;}
PrivateData Property System.Management.Automation.PSObject PrivateData {get;}
UI Property System.Management.Automation.Host.PSHostUserInterface UI {get;}
Version Property System.Version Version {get;}

Get-Member will return detailed information about them because properties and methods are all members of an object. Let’s use
Get-Member to examine all properties defined in $host. To limit Get-Member to only properties, you can use the memberType
parameter and specify “property”:

In the column Name, you will now see all supported properties in $host. In the column Definition, the property object type is listed
first. For example, you can see that the Name property stores a text as System.String type. The Version property uses the System.
Version type.

At the end of each definition, curly brackets will report whether the property is read-only ({get;}) or can also be modified ({get;set;}).
You can see at a glance that all properties of the $host object are only readable. Now, take a look at the $host.ui.rawui object:

Listing All Properties

122

$Host.ui.rawui | Get-Member -membertype property

BackgroundColor Property System.ConsoleColor BackgroundColor {get;set;}

BufferSize Property System.Management.Automation.Host.Size BufferSize {get;set;}

CursorPosition Property System.Management.Automation.Host.Coordinates CursorPosition {get;set;}

CursorSize Property System.Int32 CursorSize {get;set;}

ForegroundColor Property System.ConsoleColor ForegroundColor {get;set;}

KeyAvailable Property System.Boolean KeyAvailable {get;}

MaxPhysicalWindowSize Property System.Management.Automation.Host.Size MaxPhysicalWindowSize {get;}

MaxWindowSize Property System.Management.Automation.Host.Size MaxWindowSize {get;}

WindowPosition Property System.Management.Automation.Host.Coordinates WindowPosition {get;set;}

WindowSize Property System.Management.Automation.Host.Size WindowSize {get;set;}

WindowTitle Property System.String WindowTitle {get;set;}

$Host | Get-Member -memberType Method

 TypeName: System.Management.Automation.Internal.Host.InternalHost

Name MemberType Definition

---- ---------- ----------

EnterNestedPrompt Method System.Void EnterNestedPrompt()

Equals Method bool Equals(System.Object obj)

ExitNestedPrompt Method System.Void ExitNestedPrompt()

GetHashCode Method int GetHashCode()

GetType Method type GetType()

NotifyBeginApplication Method System.Void NotifyBeginApplication()

NotifyEndApplication Method System.Void NotifyEndApplication()

PopRunspace Method System.Void PopRunspace()

PushRunspace Method System.Void PushRunspace(runspace runspace)

SetShouldExit Method System.Void SetShouldExit(int exitCode)

ToString Method string ToString()

This result is more differentiated. It shows you that some properties could be changed, while others could not.

There are different “sorts” of properties. Most properties are of the Property type, but PowerShell can add additional prop-
erties like ScriptProperty. So if you really want to list all properties, you can use the -MemberType parameter and assign it a
value of *Property. The wildcard in front of “property” will also select all specialized properties like “ScriptProperty.”

Pro Tip

Methods are things that an object can do.Only its properties are converted into readable text when you output an object to the
console. Methods remain invisible. You can use Get-Member and the parameter “memberType” with the value “method” to list the
methods of an object:

Methods: What an
Object “Can Do”

123

PS > $Host | Get-Member -memberType Method -Force

 TypeName: System.Management.Automation.Internal.Host.InternalHost

Name MemberType Definition

---- ---------- ----------

(...)

get_CurrentCulture Method System.Globalization.CultureInfo get_Curre...

get_CurrentUICulture Method System.Globalization.CultureInfo get_Curre...

get_InstanceId Method System.Guid get_InstanceId()

get_IsRunspacePushed Method bool get_IsRunspacePushed()

get_Name Method string get_Name()

get_PrivateData Method psobject get_PrivateData()

get_Runspace Method runspace get_Runspace()

get_UI Method System.Management.Automation.Host.PSHostUs...

get_Version Method System.Version get_Version()

(...)

Query property:
$Host.version

Major Minor Build Revision

----- ----- ----- --------

2 0 -1 -1

Query property value using getter method:

$Host.get_Version()

Major Minor Build Revision

----- ----- ----- --------

2 0 -1 -1

Get-Member does not list all methods defined by an object. It will skip methods that are used internally. You can force Get-
Member to list all methods by adding the -Force parameter:

Any method that starts with “get_” is really designed to retrieve a property value. So the method “get_someInfo()” will retrieve the
very same information you could also have gotten with the “someInfo” property.

The same is true for Set_ methods: they change a property value and exist for properties that are read/writeable. Note in this
example: all properties of the $host object can only be read so there are no Set_ methods. There can be more internal methods
like this, such as Add_ and Remove_ methods. Generally speaking, when a method name contains an underscore, it is most likely
an internal method.

Eliminating “Internal” Methods

Get_ and Set_ Methods

124

In addition, nearly every object contains a number of “inherited” methods that are also not specific to the object but perform
general tasks for every object:

Before you invoke a method: make sure you know what the method will do. Methods are commands that do something, which
could be dangerous. You can add a dot to the object and then the method name to call a method. Add an opened and closed
parenthesis, like this:

There are many useful methods in the UI object. Here’s how you get a good overview:

The PowerShell prompt changes to “>>” (unless you changed your default prompt function). You have used EnterNestedPrompt()
to open a nested prompt. Nested prompts are not especially useful in a normal console, so be sure to exit it again using the exit
command or call $host.ExitNestedPrompt().

Nested prompts can be useful in functions or scripts because they work like breakpoints. They can temporarily stop a function or
script so you can verify variable contents or make code changes, after which you continue the code by entering exit. You’ll learn
more about this in Chapter 11.

Standard Methods

Calling a Method

Call Methods with Arguments

Method Description

Equals	 Verifies whether the object is identical to a comparison object

GetHashCode	 Retrieves an object’s digital “fingerprint”

GetType	 Retrieves the underlying object type

ToString	 Converts the object into readable text

Table 6.2: Standard methods of a .NET object

$host.EnterNestedPrompt()

$Host.ui | Get-Member -membertype Method

 TypeName: System.Management.Automation.Internal.Host.InternalHostUserInterface

Name MemberType Definition

---- ---------- ----------

Equals Method System.Boolean Equals(Object obj)

GetHashCode Method System.Int32 GetHashCode()

GetType Method System.Type GetType()

get_RawUI Method System.Management.Automation.Host.PSHostRawUserInterface get_RawUI()

Prompt Method System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Versio...

125

Most methods require additional arguments from you, which are listed in the Definition column.

Pick out a method from the list, and then ask Get-Member to get you more info. Let’s pick WriteDebugLine():

The Definition property tells you how to call the method. Every definition will begin with the object type that a method returns. In
this example, it is System.Void, a special object type because it represents “nothing”: the method doesn’t return anything at all. A
method “returning” System.Void is really a procedure, not a function.

Next, a method’s name follows, which is then followed by required arguments. WriteDebugLine needs exactly one argument called
message, which is of String type. Here is how you call WriteDebugLine():

Which Arguments are Required?

PromptForChoice Method System.Int32 PromptForChoice(String caption, String message, Collection`...

PromptForCredential Method System.Management.Automation.PSCredential PromptForCredential(String cap...

ReadLine Method System.String ReadLine()

ReadLineAsSecureString Method System.Security.SecureString ReadLineAsSecureString()

ToString Method System.String ToString()

Write Method System.Void Write(String value), System.Void Write(ConsoleColor foregrou...

WriteDebugLine Method System.Void WriteDebugLine(String message)

WriteErrorLine Method System.Void WriteErrorLine(String value)

WriteLine Method System.Void WriteLine(), System.Void WriteLine(String value), System.Voi...

WriteProgress Method System.Void WriteProgress(Int64 sourceId, ProgressRecord record)

WriteVerboseLine Method System.Void WriteVerboseLine(String message)

WriteWarningLine Method System.Void WriteWarningLine(String message)

Ask for data on the WriteDebugLine method in $host.ui:
$info = $Host.UI | Get-Member WriteDebugLine

$info contains all the data on this method:
$info

 TypeName: System.Management.Automation.Internal.Host.InternalHostUserInterface

Name MemberType Definition

---- ---------- ----------

WriteDebugLine Method System.Void WriteDebugLine(String message)

Definition shows which arguments are required and which result will be returned:
$info.Definition

System.Void WriteDebugLine(String message)

$Host.ui.WriteDebugLine(“Hello!”)

Hello!

126

Some methods accept different argument types, or even different numbers of arguments. To find out which “signatures” a method
supports, you can use Get-Member again and look at the Definition property:

The definition is hard to read at first. You can make it more readable by using Replace() to add line breaks.

This definition tells you: You do not necessarily need to supply arguments:

The result is an empty line.

To output text, you can specify one argument only, the text itself:

The third variant adds support for foreground and background colors:

WriteLine() actually is the low-level function of the Write-Host cmdlet:

Several Method “Signatures”

$info = $Host.UI | Get-Member WriteLine
$info.Definition
System.Void WriteLine(), System.Void WriteLine(String value), System.Void
 WriteLine(ConsoleColor foregroundColor, ConsoleColor backgroundColor, String value)

$host.ui.WriteLine()

$host.ui.WriteLine(“Red”, “White”, “Alarm!”)

Write-Host

Write-Host “Hello World!”

Write-Host -ForegroundColor Red -BackgroundColor White Alarm!

$Host.ui.WriteLine(“Hello world!”)

Hello world!

Remember the “backtick” character (“`”). It introduces special characters; “`n” stands for a line break.

$info.Definition.Replace(“), “, “)`n”)

System.Void WriteLine()

System.Void WriteLine(String value)

System.Void WriteLine(ConsoleColor foregroundColor, ConsoleColor backgroundColor, String value)

Tip

127

So far, most methods you examined have turned out to be low-level commands for cmdlets. This is also true for the following
methods: Write() (corresponds to Write-Host -nonewline) or ReadLine()/ReadLineAsSecureString() (read-host -asSecureString) or
PromptForCredential() (get-credential).

A new functionality is exposed by the method PromptForChoice(). Let’s first examine which arguments this method expects:

The definition reveals that this method returns a numeric value (System.Int32). It requires a heading and a message respectively
as text (String). The third argument is a bit strange: Collection`1 choices. The fourth argument is a number (Int32), the standard
selection. You may have noticed by now the limitations of PowerShell’s built-in description.

This is how you can use PromptForChoice() to create a simple menu:

Playing with Prompt For Choice

$info = $Host.UI | Get-Member PromptForChoice
$info.Definition

System.Int32 PromptForChoice(String caption, String message, Collection`1 choices,

 Int32 defaultChoice)

$yes = ([System.Management.Automation.Host.ChoiceDescription]”&yes”)
$no = ([System.Management.Automation.Host.ChoiceDescription]”&no”)
$selection = [System.Management.Automation.Host.ChoiceDescription[]]($yes,$no)

$answer = $Host.ui.PromptForChoice(‘Reboot’, ‘May the system now be rebooted?’,$selection,1)

$selection[$answer]

if ($selection -eq 0) {

 “Reboot”

} else {

 “OK, then not”

}

You can get the same information if you call the method without parentheses:

You can get the same information if you call the method without parentheses:

$Host.ui.PromptForChoice

MemberType : Method

OverloadDefinitions : {System.Int32 PromptForChoice(String caption, String message,

 Collection`1 choices, Int 32 defaultChoice)}

TypeNameOfValue : System.Management.Automation.PSMethod

Value : System.Int32 PromptForChoice(String caption, String message,

 Collection`1 choices, Int32 defaultChoice)

Name : PromptForChoice

IsInstance : True

Tip

128

Every PowerShell command will return objects. However, it is not that easy to get your hands on objects because PowerShell
converts them to text whenever you output them to the console.

Working with
Real-Life Objects

Save the result to variable to examine the object nature of results you receive from cmdlets.

When you dump the variable content to the console, the results stored inside of it will be converted to plain text, much like if you
had output the information to the console in the first place:

To get to the real objects, you can directly access them inside of a variable. Dir has stored its result in $listing. It is wrapped in an
array since the listing consists of more than one entry. Access an array element to get your hands on a real object:

Storing Results in Variables

$listing = Dir $env:windir

$listing

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner
Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 20.07.2007 11:37 Application data

d---- 26.07.2007 11:03 Backup

d-r-- 13.04.2007 15:05 Contacts

d---- 28.06.2007 18:33 Debug

(...)

Access first element in listing
$object = $listing[0]

Object is converted into text when you output it in the console
$object

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Tobias Weltner
Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 20.07.2007 11:37 Application data

The object picked here happens to match the folder Application Data; so it represents a directory. You can do this if you prefer to
directly pick a particular directory or file:

129

Address a particular file:
$object = Get-Item $env:windir\explorer.exe

Address a folder:
$object = Get-Item $env:windir

You can use Get-Member again to produce a list of all available properties:

Properties marked with {get;set;} in the column Definition are readable and writeable. You can actually change their value, too, by
simply assigning a new value (provided you have sufficient privileges):

Using Results Properties

$object is a fully functional object that describes the “Application Data” directory
First, list all object properties:
$object | Get-Member -membertype *property

Name MemberType Definition

---- ---------- ----------

Mode CodeProperty System.String Mode{get=Mode;}

PSChildName NoteProperty System.String PSChildName=Windows

PSDrive NoteProperty System.Management.Automation.PSDriveInfo PS...

PSIsContainer NoteProperty System.Boolean PSIsContainer=True

PSParentPath NoteProperty System.String PSParentPath=Microsoft.PowerS...

PSPath NoteProperty System.String PSPath=Microsoft.PowerShell.C...

PSProvider NoteProperty System.Management.Automation.ProviderInfo P...

Attributes Property System.IO.FileAttributes Attributes {get;set;}

CreationTime Property System.DateTime CreationTime {get;set;}

CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}

Exists Property System.Boolean Exists {get;}

Extension Property System.String Extension {get;}

FullName Property System.String FullName {get;}

LastAccessTime Property System.DateTime LastAccessTime {get;set;}

LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}

LastWriteTime Property System.DateTime LastWriteTime {get;set;}

LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}

Name Property System.String Name {get;}

Parent Property System.IO.DirectoryInfo Parent {get;}

Root Property System.IO.DirectoryInfo Root {get;}

BaseName ScriptProperty System.Object BaseName {get=$this.Name;}

Determine last access date:
$object.LastAccessTime

Friday, July 20, 2007 11:37:39

130

Change Date:
$object.LastAccessTime = Get-Date

Change was accepted:
$object.LastAccessTime
Monday, October 1, 2007 15:31:41

List all methods of the object:

$object | Get-Member -membertype *method

TypeName: System.IO.DirectoryInfo

Name MemberType Definition

---- ---------- ----------

Create Method System.Void Create(), System.Void Create(DirectorySecurity DirectoryS...

CreateObjRef Method System.Runtime.Remoting.ObjRef CreateObjRef(Type requestedType)

CreateSubDirectory Method System.IO.DirectoryInfo CreateSubDirectory(String path), System.IO.Di...

Delete Method System.Void Delete(), System.Void Delete(Boolean recursive)

Equals Method System.Boolean Equals(Object obj)

PowerShell can add additional properties to an object. Whenever that occurs, Get-Member will label the property accordingly in
the MemberType column. Native properties are just called “Property.” Properties that are added by PowerShell use a prefix, such
as “ScriptProperty” or “NoteProperty.”

A NoteProperty like PSChildName contains static data. PowerShell will add it to tag additional information to an object. A
ScriptProperty like Mode executes PowerShell script code that calculates the property’s value.

Use Get-Member to find out the methods that an object supports:

PowerShell-Specific Properties

Using Objects Methods

MemberType Description

AliasProperty	 Alternative name for a property that already exists

CodeProperty	 Static .NET method returns property contents

Property	 Genuine property

NoteProperty	 Subsequently added property with set data value

ScriptProperty	 Subsequently added property whose value is calculated by a script

ParameterizedProperty Property requiring additional arguments

Table 6.3: Different property types

131

GetAccessControl Method System.Security.AccessControl.DirectorySecurity GetAccessControl(), S...

GetDirectories Method System.IO.DirectoryInfo[] GetDirectories(), System.IO.DirectoryInfo[]...

GetFiles Method System.IO.FileInfo[] GetFiles(String searchPattern), System.IO.FileIn...

GetFileSystemInfos Method System.IO.FileSystemInfo[] GetFileSystemInfos(String searchPattern), ...

GetHashCode Method System.Int32 GetHashCode()

GetLifetimeService Method System.Object GetLifetimeService()

GetObjectData Method System.Void GetObjectData(SerializationInfo info, StreamingContext co...

GetType Method System.Type GetType()

get_Attributes Method System.IO.FileAttributes get_Attributes()

get_CreationTime Method System.DateTime get_CreationTime()

get_CreationTimeUtc Method System.DateTime get_CreationTimeUtc()

get_Exists Method System.Boolean get_Exists()

get_Extension Method System.String get_Extension()

get_FullName Method System.String get_FullName()

get_LastAccessTime Method System.DateTime get_LastAccessTime()

get_LastAccessTimeUtc Method System.DateTime get_LastAccessTimeUtc()

get_LastWriteTime Method System.DateTime get_LastWriteTime()

get_LastWriteTimeUtc Method System.DateTime get_LastWriteTimeUtc()

get_Name Method System.String get_Name()

get_Parent Method System.IO.DirectoryInfo get_Parent()

get_Root Method System.IO.DirectoryInfo get_Root()

InitializeLifetimeService Method System.Object InitializeLifetimeService()

MoveTo Method System.Void MoveTo(String destDirName)

Refresh Method System.Void Refresh()

SetAccessControl Method System.Void SetAccessControl(DirectorySecurity DirectorySecurity)

set_Attributes Method System.Void set_Attributes(FileAttributes value)

set_CreationTime Method System.Void set_CreationTime(DateTime value)

set_CreationTimeUtc Method System.Void set_CreationTimeUtc(DateTime value)

set_LastAccessTime Method System.Void set_LastAccessTime(DateTime value)

set_LastAccessTimeUtc Method System.Void set_LastAccessTimeUtc(DateTime value)

set_LastWriteTime Method System.Void set_LastWriteTime(DateTime value)

set_LastWriteTimeUtc Method System.Void set_LastWriteTimeUtc(DateTime value)

ToString Method System.String ToString()

You can apply methods just like you did in the previous examples. For example, you can use the CreateSubDirectory method if you’d
like to create a new sub-directory. First, you should find out which arguments this method requires and what it returns:

You can see that the method has two signatures. Try using the first to create a sub-directory and the second to add access permissions.

The next line creates a sub-directory called “My New Directory” without any special access privileges:

$info = $object | Get-Member CreateSubDirectory
$info.Definition.Replace(“), “, “)`n”)

System.IO.DirectoryInfo CreateSubDirectory(String path)
System.IO.DirectoryInfo CreateSubDirectory(String path, DirectorySecurity DirectorySecurity)

$object.CreateSubDirectory(“My New Directory”)

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 01.10.2007 15:49 My New Directory

132

Because the method returns a DirectoryInfo object as a result and you haven’t caught and stored this object in a variable, the pipeline
will convert it into text and output it. You could just as well have stored the result of the method in a variable:

$subdirectory = $object.CreateSubDirectory(“Another subdirectory”)

$subdirectory.CreationTime = “September 1, 1980”

$subdirectory.CreationTime

Monday, September 1, 1980 00:00:00

$date = Get-Date

$date.GetType().FullName

System.DateTime

[System.DateTime] | Get-Member -static -memberType *method

 TypeName: System.DateTime

Name MemberType Definition

---- ---------- ----------

Compare Method static System.Int32 Compare(DateTime t1, DateTime t2)

DaysInMonth Method static System.Int32 DaysInMonth(Int32 year, Int32 month)

Equals Method static System.Boolean Equals(DateTime t1, DateTime t2), static Sys...

Similarly to properties, PowerShell can also add additional methods to an object.

Using Results Properties

MemberType Description

CodeMethod	 Method mapped to a static .NET method

Method	 Genuine method

ScriptMethod	 Method invokes PowerShell code

Table 6.4: Different types of methods

By now, you know that PowerShell stores information in objects, and objects always have a type. You know that simple text is
stored in objects of type System.String and that a date, for example, is stored in an object of type System.DateTime. You also
know by now that each .NET object has a GetType() method with a Fullname property, which tells you the name of the type this
object was derived from:

Every type can have its own set of private members called “static” members. You can simply specify a type in square brackets,
pipe it to Get-Member, and then use the -static parameter to see the static members of a type.

Using Static
Methods

133

FromBinary Method static System.DateTime FromBinary(Int64 dateData)

FromFileTime Method static System.DateTime FromFileTime(Int64 fileTime)

FromFileTimeUtc Method static System.DateTime FromFileTimeUtc(Int64 fileTime)

FromOADate Method static System.DateTime FromOADate(Double d)

get_Now Method static System.DateTime get_Now()

get_Today Method static System.DateTime get_Today()

get_UtcNow Method static System.DateTime get_UtcNow()

IsLeapYear Method static System.Boolean IsLeapYear(Int32 year)

op_Addition Method static System.DateTime op_Addition(DateTime d, TimeSpan t)

op_Equality Method static System.Boolean op_Equality(DateTime d1, DateTime d2)

op_GreaterThan Method static System.Boolean op_GreaterThan(DateTime t1, DateTime t2)

op_GreaterThanOrEqual Method static System.Boolean op_GreaterThanOrEqual(DateTime t1, DateTime t2)

op_Inequality Method static System.Boolean op_Inequality(DateTime d1, DateTime d2)

op_LessThan Method static System.Boolean op_LessThan(DateTime t1, DateTime t2)

op_LessThanOrEqual Method static System.Boolean op_LessThanOrEqual(DateTime t1, DateTime t2)

op_Subtraction Method static System.DateTime op_Subtraction(DateTime d, TimeSpan t), sta...

Parse Method static System.DateTime Parse(String s), static System.DateTime Par...

ParseExact Method static System.DateTime ParseExact(String s, String format, IFormat...

ReferenceEquals Method static System.Boolean ReferenceEquals(Object objA, Object objB)

SpecifyKind Method static System.DateTime SpecifyKind(DateTime value, DateTimeKind kind)

TryParse Method static System.Boolean TryParse(String s, DateTime& result), static...

TryParseExact Method static System.Boolean TryParseExact(String s, String format, IForm...

There are a lot of method names starting with “op_,” with “op” standing for “operator.” These are methods that are called
internally whenever you use this data type with an operator. op_GreaterThanOrEqual is the method that does the internal
work when you use the PowerShell comparison operator “-ge” with date values.

Note

The System.DateTime class supplies you with a bunch of important date and time methods. For example, you should use Parse() to
convert a date string into a real DateTime object and the current locale:

You could easily find out whether a certain year is a leap year:

[System.DateTime]::Parse(“March 12, 1999”)

Friday, March 12, 1999 00:00:00

[System.DateTime]::isLeapYear(2010)

False

for ($x=2000; $x -lt 2010; $x++) { if([System.DateTime]::isLeapYear($x)) { “$x is a leap year!” } }

2000 is a leap year!

2004 is a leap year!

2008 is a leap year!

134

Or you’d like to tell your children with absolute precision how much time will elapse before they get their Christmas gifts:

Two dates are being subtracted from each other here so you now know what happened during this operation:

The first time indication is actually text. For it to become a DateTime object, you must specify the desired object type in square
brackets. Important: Converting a String to a DateTime this way always uses the U.S. locale. To convert a String to a DateTime using
your current locale, you can use the Parse() method as shown a couple of moments ago!

• The second time comes from the Now static property, which returns the current time as DateTime object. This is the same as 	
 calling the Get-Date cmdlet (which you’d then need to put in parenthesis because you wouldn’t want to subtract the Get-Date 	
 cmdlet, but rather the result of the Get-Date cmdlet).

• The two timestamps are subtracted from each other using the subtraction operator (“-”). This was possible because the DateTime 	
 class defined the op_Subtraction() static method, which is needed for this operator.

Of course, you could have called the static method yourself and received the same result:

Now it’s your turn. In the System.Math class, you’ll find a lot of useful mathematical methods. Try to put some of these methods to
work.

[DateTime]”12/24/2007 18:00” - [DateTime]::now

Days : 74

Hours : 6

Minutes : 28

Seconds : 49

Milliseconds : 215

Ticks : 64169292156000

TotalDays : 74.2700140694444

TotalHours : 1782,48033766667

TotalMinutes : 106948,82026

TotalSeconds : 6416929,2156

TotalMilliseconds : 6416929215,6

[DateTime]::op_Subtraction(“12/24/2007 18:00”, [DateTime]::Now)

Function Description Example

Abs	 Returns the absolute value of a specified number (without signs).	 [Math]::Abs(-5)

Acos	 Returns the angle whose cosine is the specified number.	 [Math]::Acos(0.6)

Asin Returns the angle whose sine is the specified number. [Math]::Asin(0.6)

Atan Returns the angle whose tangent is the specified number.	 [Math]::Atan(90)

Atan2 Returns the angle whose tangent is the quotient of two specified numbers.	 [Math]::Atan2(90, 15)

BigMul Calculates the complete product of two 32-bit numbers.	 [Math]::BigMul(1gb, 6)

Ceiling Returns the smallest integer greater than or equal to the specified number.	 [Math]::Ceiling(5.7)

Cos Returns the cosine of the specified angle.	 [Math]::Cos(90)

Cosh Returns the hyperbolic cosine of the specified angle.	 [Math]::Cosh(90)

135

Function Description Example

DivRem Calculates the quotient of two numbers and returns the remainder in an output parameter. $a = 0
[Math]::DivRem(10,3,[ref]$a)
$a

Exp Returns the specified power of e (2.7182818).	 [Math]::Exp(12)

Floor Returns the largest integer less than or equal to the specified number.	 [Math]::Floor(5.7)

IEEERemainder Returns the remainder of division of two specified numbers.	 [Math]::IEEERemainder(5,2)

Log Returns the natural logarithm of the specified number.	 [Math]::Log(1)

Log10 Returns the base 10 logarithm of the specified number.	 [Math]::Log10(6)

Max Returns the larger of two specified numbers.	 [Math]::Max(-5, 12)

Min Returns the smaller of two specified numbers.	 [Math]::Min(-5, 12)

Pow Returns a specified number raised to the specified power.	 [Math]::Pow(6,2)

Round Rounds a value to the nearest integer or to the specified number of decimal places.	 [Math]::Round(5.51)

Sign Returns a value indicating the sign of a number.	 [Math]::Sign(-12)

Sin Returns the sine of the specified angle.	 [Math]::Sin(90)

Sinh Returns the hyperbolic sine of the specified angle.	 [Math]::Sinh(90)

Sqrt Returns the square root of a specified number.	 [Math]::Sqrt(64)

Tan Returns the tangent of the specified angle.	 [Math]::Tan(45)

Tanh Returns the hyperbolic tangent of the specified angle.	 [Math]::Tanh(45)

Truncate	 Calculates the integral part of a number.	 [Math]::Truncate(5.67)

Table 6.5: Mathematical functions from the [Math] library

The .NET framework consists of thousands of types, and maybe you are getting hungry for more. Are there other interesting
types? There are actually plenty! Here are the three things you can do with .NET types:

For example, you can use System.Net.IPAddress to work with IP addresses. This is an example of a .NET type conversion where a
string is converted into a System.Net.IPAddress type:

Finding Interesting .NET Types

Converting Object Types

[system.Net.IPAddress]’127.0.0.1’

IPAddressToString : 127.0.0.1

Address : 16777343

AddressFamily : InterNetwork

ScopeId :

IsIPv6Multicast : False

IsIPv6LinkLocal : False

IsIPv6SiteLocal : False

136

Or you can use System.Net.DNS to resolve host names. This is an example of accessing a static type method, such as
GetHostByAddress():

Or you can derive an instance of a type and use its dynamic members. For example, to download a file from the Internet, try this:

Using Static Type Members

Using Dynamic Object Instance Members

[system.Net.Dns]::GetHostByAddress(“127.0.0.1”)

HostName Aliases AddressList

-------- ------- -----------

PCNEU01 {} {127.0.0.1}

Download address of a file:

$address = “http://www.powershell.com/downloads/powershellplus.zip”

Save the file to this location:

$target = “$home\psplus.zip”

Carry out download:

$object = New-Object Net.WebClient

$object.DownloadFile($address, $target)

“File was downloaded!”

$datetime = [System.DateTime] ‘1.1.2000’

$datetime.GetType().Fullname

System.DateTime

$datetime = New-Object System.DateTime

$datetime.GetType().Fullname

System.DateTime

$datetime = Get-Date

$datetime.GetType().Fullname

System.DateTime

$datetime = [System.DateTime]::Parse(‘1.1.2000’)

$datetime.GetType().Fullname

System.DateTime

Most of the time, PowerShell cmdlets deliver objects. In addition, you can create new objects (instances) that are derived from a
specific type. To get new instances, you can either convert an existing object to a new type or create a new instance using New-
Object:

Creating
New Objects

137

You can create a .NET object with New-Object,t which gives you full access to all type “constructors.” These are invisible methods
that create the new object. the type needs to have at least one constructor to create a new instance of a type. If it has none, you
cannot create instances of this type.

The DateTime type has one constructor that takes no argument. If you create a new instance of a DateTime object, you will get
back a date set to the very first date a DateTime type can represent, which happens to be January 1, 0001:

When you create a new object using New-Object, you can submit additional arguments by adding argument values as a comma
separated list enclosed in parentheses. New-Object is in fact calling a method called ctor, which is the type constructor. Like any
other method, it can support different argument signatures.

Let’s check out how you can discover the different constructors, which a type will support. The next line creates a new instance of
a System.String and uses a constructor that accepts a character and a number:

To list the available constructors for a type, you can use the GetConstructors() method available in each type. For example, you
can find out which constructors are offered by the System.String type to produce System.String objects:

You can use a different constructor to create a specific date. There is one that takes three numbers for year, month, and day:

If you simply add a number, yet another constructor is used which interprets the number as ticks, the smallest time unit a
computer can process:

Creating New Objects with New-Object

New-Object System.DateTime

Monday, January 01, 0001 12:00:00 AM

New-Object System.DateTime

Monday, May 01, 0001 12:00:00 AM

[System.String].GetConstructors() | ForEach-Object { $_.toString() }

Void .ctor(Char*)

Void .ctor(Char*, Int32, Int32)

Void .ctor(SByte*)

Void .ctor(SByte*, Int32, Int32)

Void .ctor(SByte*, Int32, Int32, System.Text.Encoding)

Void .ctor(Char[], Int32, Int32)

Void .ctor(Char[])

Void .ctor(Char, Int32)

New-Object System.DateTime (568687676789080999)

Monday, February 07, 1803 7:54:38 AM

New-Object System.String(“.”, 100)

..

Using Static Type Members

138

In fact, there are eight different signatures to create a new object of the System.String type. You just used the last variant: the first
argument is the character, and the second a number that specifies how often the character will be repeated. PowerShell will use
the next to last constructor so if you specify text in quotation marks, it will interpret text in quotation marks as a field with nothing
but characters (Char[]).

Objects can often be created without New-Object by using type casting instead. You’ve already seen how it’s done for variables in
Chapter 3:

So, if you enclose the desired .NET type in square brackets and put it in front of a variable name, PowerShell will require you to
use precisely the specified object type for this variable. If you assign a value to the variable, PowerShell will automatically convert
it to that type. That process is sometimes called “implicit type conversion.” Explicit type conversion works a little different. Here,
the desired type is put in square brackets again, but placed on the right side of the assignment operator:

PowerShell would first convert the text into a date because of the type specification and then assign it to the variable $value,
which itself remains a regular variable without type specification. Because $value is not limited to DateTime types, you can assign
other data types to the variable later on.

Using the type casting, you can also create entirely new objects without New-Object. First, create an object using New-Object:

New-Object by Conversion

PowerShell normally wraps text as a System.String:

$date = “November 1, 2007”

$date.GetType().FullName

System.String

$date

November 1, 2007

Use strong typing to set the object type of $date:

[System.DateTime]$date = “November 1, 2007”

$date.GetType().FullName

System.DateTime

$date

Thursday, November 1, 2007 00:00:00

$value = [DateTime]”November 1, 2007”

$value

Thursday, November 1, 2007 00:00:00

New-Object system.diagnostics.eventlog(“System”)

 Max(K) Retain OverflowAction Entries Name

 ------ ------ -------------- ------- ----

 20,480 0 OverwriteAsNeeded 64,230 System

$value = “McGuffin”

139

You could have accomplished the same thing without New-Object:

In the second example, the string System is converted into the System.Diagnostics.Eventlog type: The result is an EventLog object
representing the System event log.

So, when can you use New-Object and when type conversion? It is largely a matter of taste, but whenever a type has more than
one constructor and you want to select the constructor, you should use New-Object and specify the arguments for the constructor
of your choice. Type conversion will automatically choose one constructor, and you have no control over which constructor is
picked.

[System.Diagnostics.EventLog]”System”

 Max(K) Retain OverflowAction Entries Name

 ------ ------ -------------- ------- ----

 20,480 0 OverwriteAsNeeded 64,230 System

Using New-Object, you can select the constructor you wish of the type yourself:

New-Object System.String(“.”, 100)

..

When casting types, PowerShell selects the constructor automatically

For the System.String type, a constructor will be chosen that requires no arguments

Your arguments will then be interpreted as a PowerShell subexpression in which

a field will be created

PowerShell will change this field into a System.String type

PowerShell changes fields into text by separating elements from each other with whitespace:

[system.string](“.”,100)

. 100

If your arguments are not in round brackets, they will be interpreted as a Field

and the first field element # Cast in the System.String type:

[system.string]”.”, 100

.

100

Type conversion can also include type arrays (identified by “[]”) and can be a multi-step process where you convert from one
type over another type to a final type. This is how you would convert string text into a character array:

[char[]]”Hello!”

H

e

l

l

o

!

Tip

140

You could then convert each character into integers to get the character codes:

[Int[]][Char[]]”Hello World!”

72

97

108

108

111

32

87

101

108

116

33

Conversely, you could make a numeric list out of a numeric array and turn that into a string:

[string][char[]](65..90)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

$OFS = “,”
[string][char[]](65..90)

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

Just remember: if arrays are converted into a string, PowerShell uses the separator in the $ofs automatic variable as a
separator between the array elements.

Tip

To get access to even more functionality, you can load additional assemblies with more types and members. If you have ever
written VBScript scripts, you may want to get back some of your beloved VisualBasic methods, such as MsgBox() or InputBox().
Simply load the Microsoft.VisualBasic assembly, which is located in the global assembly cache:

Once you do that, you have access to a whole bunch of new types:

Loading Additional Assemblies:
Improved Internet Download

Load required assembly:

[void][reflection.assembly]::LoadWithPartialName(“Microsoft.VisualBasic”)

[Microsoft.VisualBasic.Interaction] | Get-Member -static

 TypeName: Microsoft.VisualBasic.Interaction

Name MemberType Definition

---- ---------- ----------

AppActivate Method static System.Void AppActivate(Int32 Proces...

141

Beep Method static System.Void Beep()

CallByName Method static System.Object CallByName(Object Obje...

Choose Method static System.Object Choose(Double Index, P...

Command Method static System.String Command()

CreateObject Method static System.Object CreateObject(String Pr...

DeleteSetting Method static System.Void DeleteSetting(String App...

Environ Method static System.String Environ(Int32 Expressi...

Equals Method static System.Boolean Equals(Object objA, O...

GetAllSettings Method static System.String[,] GetAllSettings(Stri...

GetObject Method static System.Object GetObject(String PathN...

GetSetting Method static System.String GetSetting(String AppN...

IIf Method static System.Object IIf(Boolean Expression...

InputBox Method static System.String InputBox(String Prompt...

MsgBox Method static Microsoft.VisualBasic.MsgBoxResult M...

Partition Method static System.String Partition(Int64 Number...

ReferenceEquals Method static System.Boolean ReferenceEquals(Objec...

SaveSetting Method static System.Void SaveSetting(String AppNa...

Shell Method static System.Int32 Shell(String PathName, ...

switch Method static System.Object switch(Params Object[]...

[microsoft.VisualBasic.Interaction]::InputBox(“Enter Name”, “Name”, “$env:username”)

Tobias

Reload required assembly:

[void][reflection.assembly]::LoadWithPartialName(“Microsoft.VisualBasic”)

Download address of a file:

$address = “http://www.idera.com/powershellplus”

This is where the file should be saved:

$target = “$home\psplus.zip”

Download will be carried out:

$object = New-Object Microsoft.VisualBasic.Devices.Network

$object.DownloadFile($address, $target, “”, “”, $true, 500, $true, “DoNothing”)

Dir REGISTRY::HKEY_CLASSES_ROOT\CLSID -include PROGID -recurse | foreach {$_.GetValue(“”)}

Or, you can use a much-improved download method, which shows a progress bar while downloading files from the Internet:

In addition to .NET, PowerShell can also load and access most COM objects, which work similar to .NET types and objects, but
use an older technology.

Using COM Objects

COM objects each have a unique name, known as ProgID or Programmatic Identifier, which is stored in the registry. So, if you
want to look up COM objects available on your computer, you can visit the registry:

Using Static Type Members

142

$object = New-Object -ComObject WScript.Shell

Make the methods of the COM objects visible:

$object | Get-Member -memberType *method

 TypeName: System.__ComObject#{41904400-be18-11d3-a28b-00104bd35090}

Name MemberType Definition

---- ---------- ----------

AppActivate Method bool AppActivate (Variant, Variant)

CreateShortcut Method IDispatch CreateShortcut (string)

Exec Method IWshExec Exec (string)

ExpandEnvironmentStrings Method string ExpandEnvironmentStrings (string)

LogEvent Method bool LogEvent (Variant, string, string)

Popup Method int Popup (string, Variant, Variant, Variant)

RegDelete Method void RegDelete (string)

RegRead Method Variant RegRead (string)

RegWrite Method void RegWrite (string, Variant, Variant)

Run Method int Run (string, Variant, Variant)

SendKeys Method void SendKeys (string, Variant)

Create an object:

$wshell = New-Object -comObject WScript.Shell

Assign a path to Desktop to the variable $path

$path = [system.Environment]::GetFolderPath(‘Desktop’)

Create a link object $link = $wshell.CreateShortcut(“$path\PowerShell.lnk”)

$link is an object and has the properties and methods

$link | Get-Member

Once you know the ProgID of a COM component, you can use New-Object to put it to work in PowerShell. Just specify the
additional parameter -COMObject:

You’ll get an object which behaves very similar to .NET objects. It will contain properties with data and methods that you can
execute. And, as always, Get-Member finds all object members for you. Let’s look at its methods:

The information required to understand how to use a method may be inadequate. Only the expected object types are given, but
not why the arguments exist. The Internet can help you if you want to know more about a COM command. Go to a search site of
your choice and enter two keywords: the ProgID of the COM components (in this case, it will be WScript.Shell) and the name of
the method that you want to use.

Some of the commonly used COM objects are WScript.Shell, WScript.Network, Scripting.FileSystemObject, InternetExplorer.
Application, Word.Application, and Shell.Application. Let’s create a shortcut to powershell.exe using WScript.Shell Com object and
its method CreateShorcut():

How Do You Use COM Objects?

143

TypeName: System.__ComObject#{f935dc23-1cf0-11d0-adb9-00c04fd58a0b}

Name MemberType Definition

---- ---------- ----------

Load Method void Load (string)

Save Method void Save ()

Arguments Property string Arguments () {get} {set}

Description Property string Description () {get} {set}

FullName Property string FullName () {get}

Hotkey Property string Hotkey () {get} {set}

IconLocation Property string IconLocation () {get} {set}

RelativePath Property {get} {set}

TargetPath Property string TargetPath () {get} {set}

WindowStyle Property int WindowStyle () {get} {set}

WorkingDirectory Property string WorkingDirectory () {get} {set}

We can populate some of the properties

$link.TargetPath = ‘powershell.exe’

$link.Description = ‘Launch Windows PowerShell console’

$link.WorkingDirectory = $profile

$link.IconLocation = ‘powershell.exe’

And save the changes using Save() method

$link.Save()

Summary
Everything in PowerShell is represented by objects that have exactly two aspects: properties and methods, which both form the
members of the object. While properties store data, methods are executable commands.

Objects are the result of all PowerShell commands and are not converted to readable text until you output the objects to the
console. However, if you save a command’s result in a variable, you will get a handle on the original objects and can evaluate their
properties or call for their commands. If you would like to see all of an object’s properties, then you can pass the object to Format-
List and type an asterisk after it. This allows all—not only the most important—properties to be output as text.

The Get-Member cmdlet retrieves even more data, enabling you to output detailed information on the properties and methods of
any object.

All the objects that you will work with in PowerShell originate from .NET framework, which PowerShell is layered. Aside from the
objects that PowerShell commands provide to you as results, you can also invoke objects directly from the .NET framework and
gain access to a powerful arsenal of new commands. Along with the dynamic methods furnished by objects, there are also static
methods, which are provided directly by the class from which objects are also derived.

If you cannot perform a task with the cmdlets, regular console commands, or methods of the .NET framework, you can resort to
the unmanaged world outside the .NET framework. You can directly access the low-level API functions, the foundation of the .NET
framework, or use COM components.

144

