
Database Tools Whitepaper®

FIVE REASONS
WHY SQL SERVER
HEALTH CHECKS
ARE LIFESAVERS
BY JEREMY KADLEC

2

CONTENTS

INTRODUCTION 3

WHAT IS A SQL SERVER HEALTH CHECK? 4

1. THE SQL SERVER SANITY CHECK 5

2. AVOID BACKUP BLUNDERS 8

3. STAY OUT OF THE NEWS AND SECURE YOUR SQL SERVERS 11

4. MAKE SQL SERVER MAINTENANCE BENEFICIAL 14

5. MAKE PERFORMANCE PREDICTABLE 17

3

INTRODUCTION
originally a niche offering more than ten years ago has evolved into a mainstream must-have for the SQL Server

community. This white paper digs into the common questions about health checks and then deliver a checklist

along with some scripts to help you perform your own SQL Server health checks.

Further, this whitepaper intends to address five keys areas that could be considered life-saving. What I mean by

life-saving is that they will help you grow, show your value to the organization, and keep your organization

running smoothly.

The SQL Server health sanity check

• Avoid backup blunders

• Stay out of the news and secure your SQL Servers

• Make SQL Server maintenance beneficial

• Make performance predictable

4

WHAT IS A SQL SERVER HEALTH CHECK?
In one word: Inspection. Although, based on my more than ten years of performing SQL Server health checks, no
two health checks are the same. It is a matter of analyzing an environment, enumerating issues, and working towards
corrective action. However, there are some critical common items you need to address whether you are building new
servers, inheriting servers, improving the checks on your existing environment, or reviewing a SQL Server instance
that has not had an inspection in a long time.

I can remember one customer distinctly that we worked with for several years. Let us call him John. All the time, John
would say “You do not know what you do not know.” Sometimes it was said with a smile, and other times it was out of
sheer frustration. In many respects, this could be the impetus for a SQL Server health check.

Call it what you want, but a health check is an inspection that is meant to get you a no-nonsense status of your
current environment. Often these inspections uncover issues in your environment; other times, they confirm the root
cause of an issue and provide concrete recommendations to resolve the issue.

A health check should:

• Validate the architecture, database design, or code for a process.

• Determine problematic code that is causing slowdowns, locking, blocking, and frustrated users.

• Prepare for upgrades of SQL Server, Windows, Storage, or the Application itself.

• Outline considerations when moving to the cloud, virtualization, or new hardware.

• Enumerate operational issues impacting the business and spinning wheels of team members.

• Identify roadblocks to capacity and scalability issues.

• Ensure your SQL Server environment is adequately secured, and your customers are protected.

From these items, and possibly more, you should establish your SQL Server health check goals as you begin to
inspect your environment.

5

1. THE SQL SERVER SANITY CHECK
Getting your arms around an environment is no small feat. You need to inventory and understand the environment

to start the process of identifying where you have issues. You also need to understand the SQL Server instance in

the context of the infrastructure, application, and business. Let us start down that path of data collection for your SQL

Server environment:

Points of contact

Business owner

User community

IT operations

IT development

Application information

Application name(s)

Application priority

Application version

Application architecture

Application language(s)

Operating hours

User location

Overall server service level agreement (SLA)

Maintenance window

Once you have an understanding of the overall context of the SQL Server instance, now you need to take it down a

notch and begin to understand the technical aspects:

Infrastructure

Datacenter | cloud location

Physical server | virtualized

Server name

Purpose: dev, test, user acceptance testing (UAT),

production
IP address

Windows domain

Server make and model

CPU: quantity, speed, cores, hyperthreading

Storage configuration: volume, size, speed

Memory: such as quantity, speed

6

Windows

Operating system version

Service pack

Patching schedule

Backup application

Backup schedule

Virus protection application

SQL Server

Instance count and names

SQL Server version and edition

SQL service accounts

SQL Server port

SQL Server protocols

SQL Server character set and sort order

SQL Server integration services configurations

SQL Server analysis services configurations

SQL Server reporting services configurations

SQL Server databases

SQL Server backup schedule: full

SQL Server backup schedule: transaction log

SQL Server maintenance window

Failed SQL Server agent jobs

Problematic SQL Server error log entries

SQL Server databases

Database location and size

Transaction log location and size

Database owner

Recovery model

Compatibility level

Number of connected users

7

As you begin to collect this information, you also need to do a sanity check on the servers. Consider these items as

you perform your inspection:

Windows

• Does the server have too much or too little CPU, memory, and disk?

• Does the drive layout make sense?

• Is the version of Windows and the service pack up to date?

SQL Server

• Is the version of SQL Server and the service pack up to date?

• Are the SQL Server configurations (that is, MAXDOP, tempdb, Max Memory) appropriate?

• Are there numerous failed SQL Server agent jobs?

• Are databases not being backed up, including the system databases?

• Is that assumption that system databases will not need to be restored?

• Have the backups been tested?

• Are the transaction logs proportionally too large as compared to the size of the database?

• Is Maintenance running during incorrect periods? Is there no maintenance at all?

• Is the security lacking with many logins with system administrator (SA) rights, shared logins, and no logging?

8

2. AVOID BACKUP BLUNDERS
Will there ever come a day when the recommendation will be “You do not need to back up your SQL Server

databases?” That is not a reality today. For many companies, backups are the last line of defense if an issue occurs.

Some companies have a sophisticated high availability and disaster recovery solution. For other companies, backups

are the first and last line of defense.

Although just about every company has a SQL Server database backup plan, is it bullet-proof? More often than not,

the plan, implementation, and testing can be lacking in several areas. Here are a few that I have seen over the years.

Having a rock-solid backup plan is a lot more than just issuing full backups daily. It is a matter of being able to recover

from a failure. You need to consider the potential failures to determine ways to mitigate the risks.

SQL Server backup plan or pretend?

Having a rock-solid backup plan is a lot more than just issuing full backups daily. It is a matter of being able to recover

from a failure. You need to consider the potential failures to determine ways to mitigate the risks

Make sure your SQL Server Database Backup Plan includes the following:

• System and User Databases: Back up all of your system- and user-defined databases except tempdb and

ReportServerTempDB. Getting your instance up and running without the system databases is possible, but it is

time-consuming and stressful when a disaster strikes.

• Make It Automatic: Make sure your backup code will automatically include new databases that are added

to the instance.

• Risk versus Budget: Work with the business to understand the budget available for backups and the

corresponding impact to the business based on the downtime. That is a real risk versus reward system. If the

business only provides you sufficient storage for a single set of backups, let them know much how data,

person-hours, and downtime the business will suffer. If the business understands the risks, they may be able

to find some budget.

• Backup Location: Backup onsite: Good or bad? Backup offsite: Good or bad? Backing up onsite and offsite:

probably your best bet to get back online locally as quickly as possible or prevent a more substantial issue from

putting you out of business altogether.

• Monitoring: It is incredible to see processes failing for days, weeks, or months without anyone having any idea

until it is too late. If your SQL Server database backups are your last line of defense, then make sure they are on

your radar, and you know they are successful daily.

9

• Point in Time: Keep in mind SQL Server has more than just full backups. Depending on your needs, be sure to

include differential and transaction log backups to restore to a point in time.

• Protection: Full database backups are a point in time version of your data, so protect them. Keep in mind a

hacker does not need to compromise your SQL Server to access your data. They can do so with the backups.

So protect your backup directories, encrypt the backup and treat your backups with the same care you treat the

online production database.

SQL Server backup plan or pretend?

Here is a simple script to issue a full backup of all your SQL Server databases:

DECLARE @name VARCHAR(50) -- database name

DECLARE @path VARCHAR(256) -- path for backup files

DECLARE @fileName VARCHAR(256) -- filename for backup

DECLARE @fileDate VARCHAR(20) -- used for file name

DECLARE @cmd1 VARCHAR(500) -- string together backup command

-- specify database backup directory

SET @path = ‘C:\Backup\’ -- Change this based on your environment

-- specify filename format

SELECT @fileDate = CONVERT(VARCHAR(20),GETDATE(),112) +

REPLACE(CONVERT(VARCHAR(20),GETDATE(),108),’:’,’’)

DECLARE db_cursor CURSOR FOR

SELECT name

FROM master.dbo.sysdatabases

WHERE name NOT IN (‘TempDB’, ‘reportservertempdb’) -- database exclusion

OPEN db_cursor

FETCH NEXT FROM db_cursor INTO @name

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @fileName = @path + @name + ‘_’ + @fileDate + ‘.BAK’

 SET @cmd1= ‘BACKUP DATABASE ‘ +’[‘ + @name + ‘]’ +

 ‘ TO DISK = ‘ + char(39) + @fileName + char(39) +

 ‘ WITH INIT, COMPRESSION;’

 EXEC (@cmd1)

 FETCH NEXT FROM db_cursor INTO @name

END

CLOSE db_cursor

DEALLOCATE db_cursor

For more details, visit Simple script to backup all SQL Server databases.

https://www.mssqltips.com/sqlservertip/1070/simple-script-to-backup-all-sql-server-databases/

10

SQL Server Backup Testing

Testing backups should be simple, straightforward, and habit. To start testing your backups, pull some out of rotation

and restore them as a new name, that is, tmp_YOURDATABASE to a Development or Test instance. Be sure to test

backups on a weekly or monthly basis from both onsite and offsite file shares. To kick it up a notch, build restore

logic to restore backups daily to a development or test instance and issue DBCC CHECKDB commands on them to

validate both the backups and the integrity of the database. More information on SQL Server Maintenance

is coming up soon.

Do not overlook this critical step and discover that your databases are not restorable after a disaster strikes. The

same is valid for working through the process of getting a SQL Server instance up and running. Practice this process

in advance of an unforeseen issue. Be proactive and get your scripts together, so you do not fumble around as the

downtime clock is ticking.

SQL Server health checks more than a report

A valuable health check is more than a report. It is education and the sharing of knowledge. With every health

check we perform at Edgewood Solutions, we strive to educate our customers. The SQL Server community has an

abundance of valuable information (tips, tricks, blog posts, articles, videos, forum posts, and more) that should be

shared to improve the knowledge of the community as a whole. With resources like these, hopefully, everyone is

better educated, and we can collectively grow. Find the issues in your environment and work to correct them to show

your value to the organization.

11

3. STAY OUT OF THE NEWS AND SECURE
 YOUR SQL SERVERS
It seems like security breaches are making the mainstream news regularly. There are many great sets of legislation

intended to protect the general public from having sensitive data compromised and to prevent other financial issues.

Whether that legislation impacts you or not, you need to take a common-sense approach to ensure your SQL Servers

are secure. Here is a baseline set of items to consider:

• Minimal permissions: users and apps

• Code not susceptible to SQL injection

• Encrypt data and backups

• Secure backups onsite and offsite

• Passwords: strong and changed often

• Auditing: key activity on servers

• No shared logins

• Windows-based authentication

• Obfuscate data for lower environments

• Escalation procedures

In terms of permissions, let us take a look at two essential scripts to start to identify vulnerabilities. First is reviewing

which logins have system administrator (SA) rights in SQL Server. SA is an abbreviation for System Administrator, and

this login in SQL Server has permissions to perform any operation on the instance. Second, we will review which

logins have database owner (DBO) rights. DBO is an abbreviation for Database Owner, and this user has permission

to perform any operation in the database. Although there are more permissions in SQL Server that

can be problematic, let us start with an inspection of these.

12

Who has system administrator (SA) rights?

In the script below, we are going to determine the logins with SQL Server system administrator (SA) rights:

SELECT SP1.[name] AS Login, SP2.[name] AS Permission

FROM sys.server_principals SP1

JOIN sys.server_role_members SRM

ON SP1.principal_id = SRM.member_principal_id

JOIN sys.server_principals SP2

ON SRM.role_principal_id = SP2.principal_id

WHERE SP2.[name] = ‘sysadmin’

ORDER BY SP1.[name]

Role Login

1 sysadnin NT Service\MSSQL$SQL19

2 sysadnin NT SERVICE\SQLAgent$SQL19

3 sysadnin NT SERVICE\SQLWriter

4 sysadnin NT SERVICE\SQLWinmgmt

5 sysadnin QUICK\

6 sysadnin sa

For more details, visit Auditing SQL Server Permissions and Roles for the Server.

In the script below, we are going to determine the logins with SQL Server system administrator (SA) rights:

DECLARE @LoginName sysname

DECLARE @sql NVARCHAR (2000)

CREATE TABLE ##tmp_xp_logininfo

(AccountName varchar(128) NOT NULL,

Type varchar(10) NOT NULL,

Privilege varchar(10) NOT NULL,

MappedLoginName varchar(128) NOT NULL,

PermissionPath varchar(128) NOT NULL)

DECLARE cur_Loginfetch CURSOR FOR

SELECT [name]

FROM master.sys.server_principals

WHERE TYPE = ‘G’

AND Name NOT IN (‘NT SERVICE\MSSQLSERVER’, ‘NT SERVICE\SQLSERVERAGENT’)

OPEN cur_Loginfetch

FETCH NEXT FROM cur_Loginfetch INTO @LoginName

WHILE @@FETCH_STATUS = 0

BEGIN

https://www.mssqltips.com/sqlservertip/2048/auditing-sql-server-permissions-and-roles-for-the-server/

13

INSERT INTO ##tmp_xp_logininfo

EXEC xp_logininfo @LoginName , ‘members’

FETCH NEXT FROM cur_Loginfetch INTO @LoginName

END

CLOSE cur_Loginfetch

DEALLOCATE cur_Loginfetch

SELECT DISTINCT(LEFT(AccountName, 35)) AS LoginName,

LEFT(PermissionPath, 35) AS GroupName

FROM ##tmp_xp_logininfo

WHERE Privilege = ‘admin’

ORDER BY 1

DROP TABLE ##tmp_xp_logininfo

For more details, visit Auditing Windows Groups from SQL Server.

Who has database owner (DBO) rights?

To find out which users have database owner (DBO) rights, we can execute the following code against

each database.

EXEC sp_helprolemember ‘db_owner’;

Are all SQL Server health checks just a validation of best practices?

Generally, the best practice is a recommendation that is valuable for the masses. What comes with experience is

understanding how to apply best practices based on your specific environment. In theory, particularly best practices

should just work. However, the reality is you need to evaluate and test the best practice to validate that the best

practice is appropriate in your environment. One traditional best practice is never to use cursors. It has been

documented in articles, videos, and heard at conferences.

A cringe-worthy statement is an absolute rule that includes words like always or never. It is undoubtedly the case

when it comes to cursors. Would I recommend a cursor for basic create, read, update, and delete (CRUD) operations?

No. Are set-based options the way to code your logic the majority of the time? Yes, but I have been in circumstances

when I have built cursor-based logic that is faster to build and easier to understand than massive set-based logic that

is buggy, locks up numerous tables, and is difficult to troubleshoot.

So are health checks just a validation of best practices? No. They should not be. The best practices can serve as a

portion of the foundation for the process, but you should customize your health check for your unique environment.

https://www.mssqltips.com/sqlservertip/1252/auditing-windows-groups-from-sql-server/

14

4. MAKE SQL SERVER MAINTENANCE BENEFICIAL
Do you change the oil in your car or the water filter in your refrigerator? Do you fertilize your lawn? That is
maintenance, and if it is a priority in other parts of your life, it needs to be a priority for your SQL Server environment.

• Be smart about these SQL Server maintenance items:

• DBCC CHECKDB

• INDEX REBUILD and REORGANIZE

• UPDATE STATISTICS

DBCC CHECKDB

DBCC CHECKDB is responsible for validating the integrity and consistency of a database. As mentioned in the
previous section, one simple means of performing DBCC CHECKDB without impacting your production environment
can be accomplished by restoring the database to a Test or Development instance and then issuing the DBCC
CHECKDB commands. If you do not have the opportunity to use a test or development instance with sufficient
resources, be sure to run the DBCC CHECKDB command against all of your databases regularly during a
low-usage period.

Here is a sample script to issue DBCC CHECKDB against all of your databases:

SET NOCOUNT ON

-- 1a - Declaration Statements for all variables

DECLARE @DatabaseName varchar(128)

DECLARE @CMD1 varchar(8000)

-- 1b - Database Variables

DECLARE @DatabaseListLoop int

DECLARE @DatabaseListTable table

(UIDDatabaseList int IDENTITY (1,1),

DatabaseName varchar(128))

-- 2a - Loop for populating the database names

INSERT INTO @DatabaseListTable(DatabaseName)

SELECT Name

FROM Master.sys.databases

WHERE Name NOT IN (‘tempdb’, ‘reportservertempdb’)

15

ORDER BY Name ASC

-- 2b - Determine the highest UIDDatabaseList to loop through the records

SELECT @DatabaseListLoop = MAX(UIDDatabaseList) FROM @DatabaseListTable

-- 2c - While condition for looping through the database records

WHILE @DatabaseListLoop > 0

BEGIN

 -- 2d - String together the final DBCC command

 SELECT @DatabaseName = DatabaseName

 FROM @DatabaseListTable

 WHERE UIDDatabaseList = @DatabaseListLoop

 -- 2e - Header

 PRINT ‘*************************’

 PRINT @DatabaseName + ‘ - ‘+ CAST(GETDATE() AS varchar(25))

 PRINT ‘*************************’

 -- 2f - String together the final DBCC command

 SELECT @CMD1 = ‘DBCC CHECKDB ([‘ + DatabaseName + ‘])’

 FROM @DatabaseListTable

 WHERE UIDDatabaseList = @DatabaseListLoop

 -- 2g - Execute the final string to complete the DBCCs

 -- SELECT @CMD1

 EXEC(@CMD1)

 -- 2h - Footer

 PRINT ‘*************************’

 PRINT ‘’

 PRINT ‘’

 PRINT ‘’

-- 2i - Descend through the database list

SELECT @DatabaseListLoop = @DatabaseListLoop - 1

END

Index rebuild and reorganize

Another way to get smart about SQL Server database maintenance is by using index rebuilds and reorganizations.

These commands are responsible for correcting fragmented indexes. The two main commands you need to become

familiar with are ALTER INDEX REORGANIZE and ALTER INDEX REBUILD. The ALTER INDEX REORGANIZE command

is an online operation that reorganizes the leaf nodes of the index to have the logical and physical index order

match. However, you are unable to change any of the properties for the index. The ALTER INDEX REBUILD command

internally drops and creates the index to correct the fragmentation issues, but also provides the ability to change the

index properties.

16

Below are two sample commands:

ALTER INDEX { index_name | ALL } ON <object> REORGANIZE

ALTER INDEX { index_name | ALL } ON <object> REBUILD WITH (

{FILLFACTOR = fill factor

| SORT_IN_TEMPDB = { ON | OFF }

| STATISTICS_NORECOMPUTE = { ON | OFF }

| ONLINE = { ON | OFF }

| MAXDOP = max_degree_of_parallelism

| DATA_COMPRESSION = { NONE | ROW | PAGE }

[ON PARTITIONS ({ <partition_number_expression> | <range> }

[, ...n])]

Update statistics

Let us give SQL Server the information it needs to access data efficiently. The best way to do so is by updating the

statistics of SQL Server. You can accomplish updating all of the statistics for a single database with a single command.

Execute the command below in your desired database:

EXEC sp_updatestats;

There is one last step - review output

need to review the results for any errors. Be sure to make this a portion of your maintenance process, so a minor

issue that you should have discovered does not turn into a major issue you could have prevented.

But I need it! Seriously?
“I need <fill in the blank>.” Name the latest craze in the SQL Server world, and I have heard someone say that they

need it. Not because the technology is going to solve a technology or business problem, but because it is the latest

and greatest SQL Server feature. I know that I am not alone in hearing these sorts of sentiments. At one of the

Baltimore SQL Server Users Group meetings, we had a speaker from Microsoft mention they had a customer who

said, “I need BIG Data.”

The reality in many of these situations is that someone has seen an article and now wants to stand up an entire

environment to find a problem this new technology will solve. All the while, the remainder of the environment is

in shambles. The lesson here is to not lose sight of finding the right solution to correct the core issues impacting

the organization.

17

5. MAKE PERFORMANCE PREDICTABLE
Everyone has performance issues such as slowdowns, locking and blocking, and unexplainable situations. I have
seen many of the same types of situations with many customers where significant time and energy is being poured
into correcting harmful code, but not the worst offending code. Often the code is long-running but only runs once a
day or week. Sure, it takes a few hours, and that is not ideal. However, there is code that runs thousands of times a
day and takes seconds for each execution.

In the aggregate, the later set of code is more detrimental than the first. If that code were optimized to run in
milliseconds, the users would be much more productive, and the SQL Server instance would require far less CPU,
memory, and disk resources.

How do you identify the problematic code?

DBCC CHECKDB is responsible for validating the integrity and consistency of a database. As mentioned in the There
are a few different ways to identify the problematic code. Profiler, Extended Events, and the dynamic management
views are probably the most popular. Let us take a look at this simplified dynamic management view query to identify
the code running most often with the highest aggregate resource count.

SELECT TOP 20

 GETDATE() AS “Collection Date”,

 qs.execution_count AS “Execution Count”,

 SUBSTRING(qt.text,qs.statement_start_offset/2 +1,

 (CASE WHEN qs.statement_end_offset = -1

 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2

 ELSE qs.statement_end_offset END -

 qs.statement_start_offset

)/2

) AS “Query Text”,

 DB_NAME(qt.dbid) AS “DB Name”,

 qs.total_worker_time AS “Total CPU Time”,

 qs.total_worker_time/qs.execution_count AS “Avg CPU Time (ms)”,

 qs.total_physical_reads AS “Total Physical Reads”,

 qs.total_physical_reads/qs.execution_count AS “Avg Physical Reads”,

 qs.total_logical_reads AS “Total Logical Reads”,

 qs.total_logical_reads/qs.execution_count AS “Avg Logical Reads”,

 qs.total_logical_writes AS “Total Logical Writes”,

 qs.total_logical_writes/qs.execution_count AS “Avg Logical Writes”,

 qs.total_elapsed_time AS “Total Duration”,

 qs.total_elapsed_time/qs.execution_count AS “Avg Duration (ms)”,

 qp.query_plan AS “Plan”

FROM sys.dm_exec_query_stats AS qs

18

CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) AS qt

CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) AS qp

WHERE

 qs.execution_count > 50 OR

 qs.total_worker_time/qs.execution_count > 100 OR

 qs.total_physical_reads/qs.execution_count > 1000 OR

 qs.total_logical_reads/qs.execution_count > 1000 OR

 qs.total_logical_writes/qs.execution_count > 1000 OR

 qs.total_elapsed_time/qs.execution_count > 1000

ORDER BY

 qs.execution_count DESC,

 qs.total_elapsed_time/qs.execution_count DESC,

 qs.total_worker_time/qs.execution_count DESC,

 qs.total_physical_reads/qs.execution_count DESC,

 qs.total_logical_reads/qs.execution_count DESC,

 qs.total_logical_writes/qs.execution_count DESC

For a complete explanation, visit Collecting and Storing Poor Performing SQL Server Queries for Analysis.

This query allows you to see the actual execution plan in the last column of the result set. Just click on it and the
execution plan will load in a new Management Studio window.

https://www.mssqltips.com/sqlservertip/2602/collecting-and-storing-poor-performing-sql-server-queries-for-analysis/

19

How do you correct the problematic code?

If you choose to use Profiler\Extended Events instead of the query above, once you have identified the code, your
next step is reviewing the Execution Plan. Here is how you review the graphical execution plan:

1. Open Management Studio

2. Open a New Query Window and paste your code

3. To include the Actual Execution Plan, press CTRL + M

4. To run the query, press F5

Here is a basic example:

As you review the execution plan, you want to focus on the areas that have the highest usage percentage. From
there, you can determine if portions of the code need to be optimized with new or different indexes as well as see if
a new coding technique is necessary. The exact solution will vary, but the execution plan should give you the insight
to get started.

As a final note, you may even be surprised that the query optimizer may even tell you how to improve the code.
That is the case with the bottom half of the execution plan image above. The query optimizer is noting a missing
index with an impact of almost 99 percent. Management Studio even makes the code available to copy, modify,
test, and implement to improve performance. It does not get much simpler than that.

20

Start for FREE

IDERA.com

IDERA’S SOLUTION
SQL Doctor

Performance tuning recommendations and health checks for SQL Server

SQL Doctor helps database administrators to tune SQL Server performance, security, and disaster recovery via

expert recommendations in physical, virtual, and cloud environments - including managed cloud databases. Unlike

its competitors, it provides display health of all SQL Servers, generation of ready-to-run SQL scripts to optimize and

undo optimization, limiting of analysis to specified databases, applications, and performance categories, and real-

time, as-needed and scheduled checkups.

ABOUT THE AUTHOR
Jeremy Kadlec is the Chief Technology Officer at Edgewood Solutions and co-founder of MSSQLTips.com, where
his team solves problems for millions of SQL Server professionals around the globe. Over his 15-year career, Jeremy
has served as a distinguished SQL Server consultant, author, speaker, community leader, and trainer. Microsoft has
recognized Jeremy as a Microsoft Most Valuable Professional for SQL Server since 2009. He loves spending time
with his family and is an avid sport fisherman.

https://www.idera.com/productssolutions/sqlserver/sqldoctor/freetrialsubscriptionform?utm_medium=inasset&utm_content=pdf&utm_source=whitepapert&utm_campaign=five-reasons-sql-server-health-checks-are-important
http://www.MSSQLTips.com

