
SQL Server Whitepaper

Clear guidance on best practices for managing tempdb to provide the
optimum balance between performance, reliability, and manageability

®

DEMYSTIFY TEMPDB
PERFORMANCE AND
MANAGEABILITY

BY ROBERT L. DAVIS

https://www.idera.com/

INTRODUCTION
There are many misconceptions and myths about tempdb and purported best
practices are inconsistent at best. It’s hard to know which advice to follow when
one resource says to always do it one way and another tells you to always do it
the opposite way. Many times, both resources are correct in certain situations or
to a certain degree. Part of the problem is that rarely is there a single correct
solution to any scenario in SQL Server. Unfortunately, many administrators will
assume that because a practice worked for them in one situation that they
should do the same practice in every situation.

The purpose of this whitepaper is to guide you on how to make the right decisions
for managing tempdb; to help you determine the proper solution for any given
scenario. In order to be able to make these decisions, there are several concepts
that must be understood. We will take a look at what tempdb is and how it is used
and some common major problems and how to prevent them. We will also provide
some best practices on configuring and monitoring tempdb.

Published: January 2015

Applies to:
SQL Server 2008, SQL Server 2008 R2, SQL Server 2012, SQL Server 2014, and SQL Server 2016

SELECT FreePages = SUM(unallocated_extent_page_count),
FreeSpaceMB = SUM(unallocated_extent_page_count)/128.0,
VersionStorePages = SUM(version_store_reserved_page_count),
VersionStoreMB = SUM(version_store_reserved_page_count)/128.0,
InternalObjectPages = SUM(internal_object_reserved_page_count),
InternalObjectsMB = SUM(internal_object_reserved_page_count)/128.0,
UserObjectPages = SUM(user_object_reserved_page_count),
UserObjectsMB = SUM(user_object_reserved_page_count)/128.0
FROM sys.dm_db_file_space_usage;

The cornerstone of making smart decisions is being educated on the subject. Any deep discussion of tempdb should begin
with an explanation of what tempdb is and how it is used. Tempdb is like the catchall for the database engine. One analogy
that works well is a well-organized junk drawer.

The database engine uses tempdb for all of the following:

Temporary user objects
 • Temp tables
 • Table variables
 • Temp procedures
 • Global temp tables
 • Cursors

Work tables / work files / intermediate results
 • Sorts
 • Index rebuilds
 • Some Group By, Order By, or Union operations
 • Spools
 • Hash joins and hash aggregates
 • Spills to tempdb
 • Temporary LOB storage
 • Returned tables for table valued functions
 • Service broker caching
 • Common Table Expressions (CTEs)

Version store for data modification transactions from
 • Read committed snapshot isolation
 • Snapshot isolation
 • Online indexes
 • After triggers
 • Multiple Active Results Sets (MARS)

As you can see, tempdb is very much like a junk drawer. SQL has to keep track of everything in tempdb. It organizes the above
objects into three groups: internal objects, external objects, and the version store. You can see how much total tempdb disk
space is allocated to each category by querying the dynamic management view (DMV) sys.dm_db_file_space_usage.

WHAT IS TEMPDB

One of the most daunting performance problems with tempdb is contention on the allocation pages, often referred to as just
tempdb contention. The default settings for tempdb are not su�cient for active systems. Even a moderately busy system can
easily overcome the allocations pages for tempdb.

Tempdb contention is often confused with general blocking. In fact, the way it is generally detected is because it causes
blocked processes. In severe cases, it can create a massive blocking chain that grows faster than processes can be cleared
out. This results in client connections timing out which leads to a massive chain of blocked processes attempting to roll back.

However, this is not just simple blocking. Tempdb contention is latch contention on the allocation pages. There are three types
of pages that experience this issue:

Page Free Space (PFS): Tracks the allocation status of each page and approximately how much free space it has. There is one
PFS page for every 1/2 GB of data file. The first PFS page is page number 1 of the data file. The second is page 8088 and then
it repeats every 8088 pages thereafter.

Global Allocation Map (GAM): Tracks which extents have been allocated. There is one GAM page for every 4 GB of data file.
The first GAM page is page number 2 in the data file, the second is page number 511232, and then it repeats every 511,232 pages.

Shared Global Allocation Map (SGAM): Tracks which extents are being used as mixed (shared) extents. There is one SGAM
page for every 4 GB of data file. The first SGAM page is page number 3 in the data file, the second is page number 511233,
and then it repeats every 511,232 pages.

You can use the dynamic management view (DMV) sys.dm_os_waiting_tasks to find tasks that are waiting on a resource.
Tasks waiting on PageIOLatch or PageLatch wait types are experiencing contention. The resource description points to the
page that is experiencing contention and you can easily parse the resource description to get the page number. Then it’s
just a math problem to determine if it is an allocation page.

The formula for determining the type of page experiencing contention is:

 • PFS: Page ID = 1 or Page ID % 8088
 • GAM: Page ID = 2 or Page ID % 511232
 • SGAM: Page ID = 3 or (Page ID – 1) % 511232

The following query will parse the resource description and determine if the contention being experienced is on allocation
pages or not:

TEMPDB CONTENTION AND CONFIGURATION

WITH Tasks
AS (SELECT session_id,
 wait_type,
 wait_duration_ms,
 blocking_session_id,
 resource_description,
 PageID = CAST(Right(resource_description,
 LEN(resource_description) -
 CHARINDEX(':', resource_description, 3))
 AS INT)

 FROM sys.dm_os_waiting_tasks
 WHERE wait_type LIKE 'PAGE%LATCH_%'
 AND resource_description LIKE '2:%')
SELECT session_id,
 wait_type,
 wait_duration_ms,
 blocking_session_id,
 resource_description,
 ResourceType =
 CASE
 WHEN PageID = 1 Or PageID % 8088 = 0
 THEN 'Is PFS Page'
 WHEN PageID = 2 Or PageID % 511232 = 0
 THEN 'Is GAM Page'
 WHEN PageID = 3 Or (PageID - 1) % 511232 = 0
 THEN 'Is SGAM Page'
 ELSE 'Is Not PFS, GAM, or SGAM page'
 END
FROM Tasks;

The key to avoiding the problem of tempdb contention is proper configuration of tempdb. The correct number of data files for
tempdb is a highly debated topic. For many years, Microsoft officially recommended one data file per logical CPU core (1:1 ratio),
and many DBAs are familiar with this advice. Even with the most modern servers that have very high numbers of cores, this
recommendation from Microsoft persisted. Many of the biggest names in SQL Server disagreed with this recommendation and
advocated for a more more gradual approach to configuring the number of data files. Microsoft has recently backed o� of their
original recommendation and documented this different approach under KB article 2154845 (See it here).

The new recommendation is that you limit the starting point to a maximum of 8 data files. Then, if tempdb contention occurs,
add more data files, 4 at a time, until the contention stops up to a maximum of 1 data file per logical core.

For example, if I had a system with 24 logical cores, I would start by creating a total of 8 tempdb data files. If tempdb contention
occurs, I would add 4 data files bringing the total to 12. If the contention continues to occur, I would add another 4 data files and
repeat as necessary until the contention was resolved or until I reached a maximum of 24 data files (1 per logical core).

Bearing in mind the change in recommendation from Microsoft, you may still find yourself asking, “Do I need one data file per
logical CPU core or not?”As with most things in SQL Server, the answer is, “it depends.” Some extremely busy servers with
heavy tempdb usage may need one data file per logical CPU core. This would qualify as one of those edge cases that
somehow became the rule. Yes, it is possible that you may need one file per core, but not very likely.

It is logical to start with a ratio of one data file for every two or four cores and adjust as needed. The “as needed” part is what
can kill performance of your server. As needed means that tempdb contention is occurring. This can be a minor issue if you are
monitoring for tempdb contention and you know what action to take to alleviate it and you are comfortable with experiencing a
major performance impact when it occurs until you can take steps to fix it. If you cannot answer yes to all of those stipulations,
you should consider following the tried-and-true practice of one data file per core. The best practice for ratio of data files per
logical CPU core can be summarized as below.

DATA FILE PER CPU CORE RATIO

http://support.microsoft.com/kb/2154845

 1. Create 1 tempdb data file per logical CPU core

OR…

 1. Start With 1 data file for every 2 or 4 logical CPU cores, up to a maximum of 8

 2. Monitor for tempdb contention

 3. If tempdb contention is detected, increase the number of data files by 4

 4. Repeat this process until contention is resolved, up to a maximum of 1 data file per
 logical CPU core

The number of data files is only one best practice for tempdb that a�ects tempdb contention. The sizes of those data files are
also critically important. You will often hear that tempdb writes to the data files in a round-robin method. In an ideal scenario,
this description is su�cient. The algorithm that SQL uses to determine which file to use is actually more complex than that.

The process takes into consideration several factors. One of the main items to examine is the amount of free space on the
data file. SQL also implements a clock-hand type of counter that tracks when it skips over each of the data files and when it
uses them. It increments or decrements a counter based on when it uses a particular data file.

Having equal amounts of free space is critical to maintaining the round-robin data flow. It is important that the data files are all
the same size and maintain the same size. The data files should be pre-sized to avoid any auto-growth of the data files. If one
data file is expanded, the newly grown file will have more free space than the other data files and SQL will start writing all data
to this single file until it catches up with the other files in free space. At this point, SQL may need to grow the file again. If the
files are not the same size, SQL will auto-grow the largest file. You will end up with one file continually growing while the
others stay small. This can cause unexpected breakouts of tempdb contention even though you have multiple files.

You want to avoid growing the files if at all possible. You should pre-size the data files so that they are all the same size and
large enough that there won’t be any need to grow the data files. My recommendation would be to pre-size all of the files, data
and log, to use approximately 90% of the available drive space and disable auto-growth on the data files. I recommend allowing
the log file to auto-grow by a set size, such as 512 MB, just in case. Since there should only ever be a single log file, there is very
little harm if it auto-grows.

I recommend setting the log file to be approximately double the size of a single data file. The formula I recommend for
calculating the size of the tempdb files given a drive with a specific size is:

There will never be a need to have more than one data file per CPU core. The actual number of data files that SQL Server can
use is the number of concurrent processes using tempdb at the same time. All processes ultimately run one task at a time on
each CPU thread and there is only one CPU thread per logical CPU core. If every core is running a task and each of those tasks
is using tempdb, the number of threads hitting tempdb will be the same as the number of logical cores. Your server will never
have more processes than number of CPUs hitting tempdb.

PRE-SIZE FILES TO AVOID AUTO-GROWTH

Data file = (Size of drive * 90%) / (Number of data files + 2
 [log file will be double the data file])
Log file = Data file * 2

For example, if I have a 100 GB drive to use for tempdb, and I am creating 1 data file per CPU for an 8 CPU SQL Server, I will
calculate the file sizes to be:

The final calculation is 8 data files of 8 GB each and 1 log file of 18 GB leaving 10 GB free for possible log file growth.

There is another popular recommendation of implementing trace flag 1117 to force SQL Server to auto-grow all data files
equally when expansion is needed to work-around this issue. The trace flag will work for tempdb in this situation but there
is a major downside to using it. The trace flag affects every database on the server. Unlike tempdb, the files in a user database
may not be used in the same round-robin fashion and this behavior may result in some files growing very large even though
they have very little data in them.

Data file = (100 GB * 90%) / (8 + 2) = 90 GB / 10 = 9 GB
Log file = 9 GB * 2 = 18 GB

A lot of emphasis is placed on putting tempdb on the fastest disks possible. In my opinion, having plenty of RAM is even
more important than disk performance.

Tempdb is being continually optimized in the engine to improve performance. One of the ways that tempdb performance
has improved and continues to improve is its use of RAM. Tempdb will try to maintain objects in RAM as much as it can.
There is a lot you can do to help tempdb stay in RAM.

First of all, you can help tempdb maintain objects in RAM by giving it plenty of RAM to use. If SQL is experiencing bu�er pool
memory pressure, SQL may trim some areas of the bu�er pool to make more available to other areas such as the data cache
or procedure cache.

The second thing you can do is to maintain a highly optimized system with current and meaningful statistics to avoid a
phenomenon called query spills.When compiling a query, the query optimizer will calculate the amount of memory it thinks
the query will need for sort, spool, or hash operations. Queries will only use a contiguous block of memory for these operations.
If the amount of memory granted to the query is insu�cient, the process will spill to tempdb. It will never request additional
memory as there is no way for it to ensure that the memory will be contiguous.

When a spill occurs, everything that has been written to memory will be flushed to disk. This operation is very disk intensive
on tempdb and can cause major blocking or delays in processing of the query.

Spills to tempdb may be caused by statistics not being maintained, by parameter sniffing (which results in discrepancies in
the number of estimated rows versus the actual number of rows), and by widely skewed data (making it difficult for the optimizer
to estimate the number of rows). In my experience, index and column statistics are the leading contributors to this problem.
You can identify a currently executing spill to tempdb using the DMV sys.dm_os_waiting_tasks. The wait types most associated
with a spill to tempdb are IO_COMPLETION and SLEEP_TASK. IO_COMPLETION literally means what the name implies; it is
waiting for a disk IO task to complete. SLEEP_TASK is a generic wait type that can be seen in many di�erent scenarios, but in
most scenarios other than a spill to tempdb, the wait is held for such a short time that you will rarely catch it in progress. If you
see sustained SLEEP_TASK waits, it is very likely a spill to tempdb.

Some common tactics for preventing these problems include using a higher sample rate for statistics updates and updating
statistics more frequently. For the last case where data is widely skewed, the problem may persist even with the best possible
statistics. Statistics are limited to 200 entries to try to describe the entire dataset in the index or columns. The greater the
number of distinct values that must be represented, the harder it is to represent them accurately. Sometimes you can help
the optimizer by adding statistics for a column that is not indexed.

A known instance of data skew can be worked around by applying a filter to statistics. If you created a filtered index, the
optimizer may or may not be able to use the filtered index. However, it would be able to take advantage of the statistics created
to support the filtered index. Statistics are much lighter weight than indexes and if you only need the statistics for the optimizer
to get accurate counts, then it makes sense to only create the statistics.

DISK PERFORMANCE AND RAM

If spills are currently occurring, you can use the DMV sys.dm_exec_query_memory_grants to see how much memory
the optimizer thought the query needed. While the query is still running, the ideal_memory_kb column will show how
much physical memory the optimizer thought the query would need.

You can see how much bu�er pool space tempdb is using by querying the system catalogs sys.allocation_units and
sys.partitions. The below query provides some raw details of the tempdb objects in the bu�er pool.

You can combine these results with the DMV sys.dm_os_buffer_descriptors to dig deeper into the tempdb objects in the bu�er
pool. The full query and description of the output can be found in the blog post IO — Where Are My TempDB Objects?

USE tempdb;

SELECT ObjectName = OBJECT_NAME(object_id),
 object_id,
 index_id,
 allocation_unit_id,
 used_pages,
 AU.type_desc
FROM sys.allocation_units AS AU
INNER JOIN sys.partitions AS P
 -- Container is hobt for in row data
 -- and row overflow data
 ON AU.container_id = P.hobt_id
 -- IN_ROW_DATA and ROW_OVERFLOW_DATA
 AND AU.type In (1, 3)
UNION ALL
SELECT ObjectName = OBJECT_NAME(object_id),
 object_id,
 index_id,
 allocation_unit_id,
 used_pages,
 AU.type_desc
FROM sys.allocation_units AS AU
INNER JOIN sys.partitions AS P
 -- Container is partition for LOB data
 ON AU.container_id = P.partition_id
 -- LOB_DATA
 AND AU.type = 2

http://www.sqlsoldier.com/wp/sqlserver/iowherearemytempdbobjects

There is a special type of contention in tempdb that cannot be alleviated by adding additional data files. Heavy PageLatch or
PageIOLatch contention on system tables can be caused by heavy use of ad hoc temporary objects, views, or SELECT INTO
statements. Because the contention is occurring on objects rather than allocation pages, the number of data files will not come
into play. System objects are not going to be spread across files. They will be in the primary data file. The most common
scenario is for the table sys.sysmultiobjrefs, but that does not mean it can be limited only to this table.

When you encounter heavy contention on a non-allocation page in the low 100’s or lower, you may be experiencing this special
form of contention. Typically, we see the resource reported as page 103 in file 1 (resource description 2:1:103 in the form
<database ID>:<file ID>:<page ID>). You can confirm that the page is a system table by using DBCC PAGE to dump the page
header info. When using DBCC PAGE, you will also want to turn on trace flag 3604 to output the trace info to the console like
the following example.

In the header section of the output, you will see a name/value pair with the name “Metadata: ObjectId”. The value reported
in this pair is the object ID of the table experiencing the contention. You can use this value along with the OBJECTNAME() and
OBJECTPROPERTYEX() functions to see the table’s name and whether or not it is a system table. For example, if the object ID
is reported as 75 for the object to which the page belongs, I would execute the following command:

To simplify this process, I wrote a query that will perform all the steps outlined above and return the final results. If you are
getting a di�erent wait resource than 2:1:103, be sure to change the wait resource near the top of the script.

CONTENTION ON SYSTEM OBJECTS

DBCC TRACEON(3604);
DBCC PAGE (2, 1, 103, 1);
DBCC TRACEOFF(3604);

Use tempdb;
 Select TableName = OBJECT_SCHEMA_NAME(75) +
 '.' + OBJECT OBJECT_NAME(75),
 IsSystemTable = OBJECTPROPERTYEX(75, 'IsSystemTable');

Use tempdb;
Declare @WaitResource nvarchar(20) = N'2:1:103',
@DbID nvarchar(10),
@FileID nvarchar(10),
@PageID nvarchar(10),
@SQL nvarchar(100),
@ObjID int;

TableName

sys.sysmultiobjrefs

IsSystemTable

1

Using the given wait resource, the output is once again for the table sys.sysmultiobjrefs.

If you are seeing contention on sys.sysmultiobjrefs, the only way to alleviate the contention is to modify the o�ending query
to reduce the usage of temporary objects. One approach is to optimize how you use the temporary objects. Minimize the DDL
operations on temp tables, for example, and include constraints and keys as part of the CREATE statement rather than doing
them in di�erent operations whenever possible. More importantly, try to remove the use of temp tables or table variables
where it makes sense.

Declare @DBCCPage Table (ParentObject varchar(100),
 [Object] varchar(100),
 Field varchar(100),
 Value varchar(100));

Set @DbID = Left(@WaitResource, CharIndex(':', @WaitResource) - 1)
Set @FileID = SubString(@WaitResource, Len(@DatabaseID) + 2,
 CharIndex(':', @WaitResource, Len(@DbID) - 1) - 1)
Set @PageID = Right(@WaitResource,
 Len(@WaitResource) - CharIndex(':', Reverse(@WaitResource)))
Set @SQL = N'DBCC PAGE(' + @DbID + ', ' + @FileID + ', ' +
 @PageID + ', 1) WITH TABLERESULTS;';

Insert Into @DBCCPage
Exec sp_executesql @SQL;

Select @ObjID = Value
From @DBCCPage
Where ParentObject = 'PAGE HEADER:'
And Field = 'Metadata: ObjectId';

Select TableName = OBJECT_SCHEMA_NAME(@ObjID) +
 '.' + OBJECT_NAME(@ObjID),
 IsSystemTable = OBJECTPROPERTYEX(@ObjID, 'IsSystemTable');

TableName

sys.sysmultiobjrefs

IsSystemTable

1

VERSION STORE MONITORING
The version store is a fairly new concept to tempdb administration. The version store keeps copies of data (old “versions”
of the data) in tempdb for use by various SQL Server features, including:

 • Read committed snapshot isolation
 • Snapshot isolation
 • Online indexes
 • After triggers
 • Multiple Active Results Sets (MARS)

SQL attempts to keep the version store as clean as possible. One of the misunderstood concepts of version store cleanup is
that it does not de-allocate versions as soon as they are no longer being used. SQL will only clean up versions that are older
than the oldest active transaction in the version store. A long running transaction can easily cause the version store to grow
very large because unused versions must be maintained as long as an older transaction than itself exists.

The DMV sys.dm_tran_active_snapshot_database_transactions returns information about all active transactions that
generate or may potentially access a version in the version store, not including system transactions. You can query this
DMV for the maximum elapsed_time_seconds column to see the oldest transaction in the version store.

Key performance counters to watch for the version store are the Version Generation rate (KB/s), Version Cleanup rate (KB/s),
and Version Store Size (KB) counters in the SQLServer:Transactions object. You can compare generation rate to cleanup rate
to determine if the version store is growing faster than it is being cleaned up. These values can fluctuate considerably based
on activity and length of transactions. The version store size should also be considered when evaluating the generation and
cleanup rate. If the store size is not growing, then a high generation rate may not be much of a concern. Likewise, a really
low cleanup rate may not be worth worrying about if the size is very low.

The recommendation is to baseline these counters and determine what is the normal functional range for your system when
it is healthy. Then you can determine at what point the numbers may be indicative of a problem. The query on the next page
will allow you to capture all three counters at the same time.

SELECT TOP (1) *
FROM sys.dm_tran_active_snapshot_database_transactions
ORDER BY elapsed_time_seconds DESC;

SELECT object_name AS 'Counter Object',
 [Version Generation rate (KB/s)],
 [Version Cleanup rate (KB/s)],
 [Version Store Size (KB)]
FROM (SELECT object_name,
 counter_name,
 cntr_value
 FROM sys.dm_os_performance_counters
 WHERE object_name = 'SQLServer:Transactions'
 AND counter_name IN (
 'Version Generation rate (KB/s)',
 'Version Cleanup rate (KB/s)',

Declare @MaxProductKey int;

-- Get maximum ProductKey (identity) value
Select @MaxProductKey = Max(ProductKey)
From dbo.DimProduct;

-- Enable identity insert to ensure no gaps exist
Set Identity_Insert dbo.DimProduct On;

EAGER WRITES AND SQL 2014
Eager writes occur when a transaction is writing a large amount of data to the bu�er pool. When a large amount of pages have
been written, the eager writer process will proactively write the bu�er pages to disk to minimize the load on the lazy writer and
checkpoint processes. In normal operations this spreads the IO for large operations out over a longer period of time rather than
having to do it all after the process has completed.

SQL Server 2014 introduced a new enhancement to eliminate eager writes for minimally logged transactions in tempdb.
Minimally logged transactions in tempdb a�ected by this improvement include things like bulk import or SELECT INTO
statements into a temporary table or table variable or index creation or rebuilds that use SORT_IN_TEMPDB = ON. Data
in tempdb is considered volatile and is generally expected to be dropped by the end of the transaction. There is generally
no need to write the data for these operations to disk as they do not need to be persisted.

Note: Here are more details on minimally logged operations.

The elimination of eager writes means that these large operations can now be performed solely in memory with no writes
to disk. Disk IO is quite often the slowest part of a transaction that involves reading or writing to or from disk. You can see
some considerable performance improvements in the time it takes to perform the exact same operations.

To demonstrate this, I decide to test a SELECT INTO statement into a temporary table using the AdventureWorksDW
database in SQL Server 2012 and SQL Server 2014. I wanted to make sure the databases were identical, so I backed up
the AdventureWorksDW2012 database on my SQL Server 2012 instance and restored it onto my SQL Server 2014 instance.

I identified the largest table in the database via sys.partitions, and I pump up the data volume many times over. I started o�
with a little more than 76,000 rows of data in the table dbo.FactProductInventory and executed the query below several times
until I had almost 25 million rows. Due to a foreign key dependency, I also had to insert data into dbo.DimProduct as well.

 'Version Store Size (KB)')) AS P
PIVOT (MIN(cntr_value)
 FOR counter_name IN (
 [Version Generation rate (KB/s)],
 [Version Cleanup rate (KB/s)],
 [Version Store Size (KB)])) AS Pvt;

http://technet.microsoft.com/en-us/library/ms191244%28v=SQL.105%29.aspx

-- Insert new products into dbo.DimProduct
Insert Into dbo.DimProduct (ProductKey,
 ProductAlternateKey,
 EnglishProductName,
 SpanishProductName,
 FrenchProductName,
 FinishedGoodsFlag,
 Color,
 StartDate)
Select ProductKey + @MaxProductKey,
 ProductAlternateKey,
 EnglishProductName,
 SpanishProductName,
 FrenchProductName,
 FinishedGoodsFlag,
 Color,
 StartDate = DateAdd(second, ProductKey + @MaxProductKey, getdate())
From dbo.DimProduct;

-- Disable identity insert
Set Identity_Insert dbo.DimProduct Off;

-- Insert new product inventory for new products added above
Insert Into dbo.FactProductInventory
Select ProductKey + @MaxProductKey,
 DateKey,
 MovementDate,
 UnitCost,
 UnitsIn,
 UnitsOut,
 UnitsBalance
From dbo.FactProductInventory;

Set Statistics Time On;

Select *
Into #FactProductInventory
From dbo.FactProductInventory;

Set Statistics Time Off;

Drop table #FactProductInventory;

SQL Server Execution Times:
 CPU time = 9500 ms, elapsed time = 10347 ms.

(24841152 row(s) affected)

SQL Server Execution Times:
 CPU time = 22750 ms, elapsed time = 3665 ms.

(24841152 row(s) affected)

Now that the table has more data (24,841,152 rows in my database), I run a SELECT INTO command into a temp table
and observe the time di�erence using STATISTICS IO. The query I execute on both servers is below.

The relevant results from the SQL Server 2012 instance were 10.347 seconds total time:

The relevant results from the SQL Server 2014 instance were 3.665 seconds total time:

That’s an improvement in execution time of about 300%. If you are doing bulk transactions like this in tempdb or doing index
operations with sort in tempdb, you should see an automatic performance improvement by simply upgrading to SQL Server 2014.
And if you are not using sort in tempdb for your index operations, you have even more reason to do so in SQL Server 2014.

One thing to bear in mind is that this enhancement has been described as a hidden performance improvement as it was not
publicized or documented by the SQL Server product team. This is not an unusual thing. Every new version of SQL Server has
optimizations in that do not get publicized. This is one reason why I advocate for being on the most recent major version of
SQL Server as possible. You never know what performance improvement is out there that can make a huge di�erence
in your workload.

LOCAL TEMPDB IN A FAILOVER
CLUSTER INSTANCE
For many major versions, when running a Failover Cluster Instance (FCI) tempdb database files had to be located on cluster
shared disks. Beginning with SQL Server 2012, you have the option to put the tempdb files on local, non-shared drives. Due to
the volatility of tempdb data, there is no logical reason that a failover cluster node would need to have tempdb tra�c shared.
When a failover occurs and tempdb starts up, tempdb will be cleared and any previous objects or data will be lost.

By moving the tempdb files to a local disk, it greatly reduces the amount of tra�c that must be transferred to the SAN or
whatever shared storage system is being used. This reduces the amount of data being transferred and on busy systems
can make a big di�erence in the performance of throughout to storage.

Additionally, if you are moving tempdb to local drives, you can take advantage of one of the solid-state-drive (SSD) offerings via
PCI. This also provides ultra-high disk performance and throughput to the disk for tempdb. Even though we want tempdb to use
RAM as much as possible, if you do run into an issue where tempdb writes to disk, such as a spill to tempdb, then the
performance di�erence will be considerable.

When using local SSD drives, you do still want to use RAID for the drives to protect from single disk failures. It’s key to
remember that if your tempdb drive goes o�ine, the whole instance goes o�ine. Even if you only use a simple RAID mirror,
it will greatly reduce the chances of tempdb going o�ine.

CONCLUSION
Tempdb is a very critical component of your SQL Server and can be a major performance pain point if not managed properly.
Having a performant tempdb starts with proper configuration and includes consistent base lining and monitoring of tempdb.

• Tempdb configuration:

 • Multiple data files pre-sized equally to avoid auto-growth

 A. Use 1 data file per CPU if you are not comfortable with any part of the alternative. Or...

 B. Start with 1 data file per 2 or 4 CPUs, monitor for tempdb contention, and adjust the number of data files as needed

 • Pre-size the data and log files to use 90% of the available disk space

 • The log file should be twice the size of a single data file

 • Disable auto-growth of the data files

 • Set auto-growth of the log file to a hard value such as 512 MB

• Provide plenty of RAM for tempdb to use

• Make sure queries and table statistics are optimized to avoid tempdb spills

• Monitor for tempdb contention

• Monitor the version store for long running transactions

• Baseline the version store to get a functional range for your server and monitor for changes outside of this range

• Put tempdb files on local SSD drives in a RAID configuration for a Failover Cluster Instance

• Consider upgrading to SQL 2014 if you do bulk transactions in tempdb or use sort_in_tempdb for index operations

These best practices will help you prevent, detect, and mitigate common performance problems. Couple these best practices
with an understanding of how tempdb works and the role it plays will help guide you to troubleshooting tempdb issues.

ABOUT THE AUTHOR:
Robert L Davis is a senior database administrator and technical lead at Microsoft. He is a speaker and a trainer as well as a writer

for SQL Server Magazine, & co-authored “Pro SQL Server 2008 Mirroring” (Apress).

Blog: www.sqlsoldier.com Twitter: @sqlsoldier

IDERA understands that IT doesn’t run on the network – it runs on the data and databases that power your business.
That’s why we design our products with the database as the nucleus of your IT universe.

Our database lifecycle management solutions allow database and IT professionals to design, monitor and manage data
systems with complete confidence, whether in the cloud or on-premises.

We o�er a diverse portfolio of free tools and educational resources to help you do more with less while giving you
the knowledge to deliver even more than you did yesterday.

Whatever your need, IDERA has a solution.

https://www.idera.com/

Easily monitor and view the performance of both physical server and VMware or Hyper-V virtual server environments
to get a complete view of SQL Server databases. View performance metrics and alerts for virtual machines and their
related hosts including CPU, memory, disk usage, network etc. to get a complete performance picture of the
SQL server environment.

 • Performance monitoring for physical and virtual SQL Servers

 • Deep query analysis to identify excessive waits and resource consumption

 • History browsing to find and troubleshoot past issues

 • Adaptive & automated alerting with 100+ pre-defined and configurable aler

 • Capacity planning to see database growth trends and minimize server spraw

 • SCOM management pack for integration with System Center

SQL Diagnostic Manager

To learn more visit idera.com today!

IDERA.com

Start for FREE

24x7 SQL Performance Monitoring, Alerting and Diagnostics

https://www.idera.com/productssolutions/sqlserver/sqldiagnosticmanager?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=demystifying-tempdb
https://www.idera.com/productssolutions/sqlserver/sqldiagnosticmanager?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=demystifying-tempdb
https://www.idera.com/?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=demystifying-tempdb
https://www.idera.com/
https://www.idera.com/

