
SQL Server Whitepaper
®

BEGINNING
PERFORMANCE
TUNING

BY PINAL DAVE
DEVELOPER EVANGELIST

To get more out of everything we buy is intrinsic to human nature. We all
have this in our DNA. When we do investments of any kind, we look for
various parameters before we take the calculated risks. Assume we are at
a vehicle showroom, out of the thousand questions we ask from speed,
new accessories and lastly the mileage. We enquire so much to get the
best and want to know what each and every button can do as functionality
in the vehicle we buy. These behaviors don’t change in the IT too. Ask a
developer or DBA, their most dreaded time is when the server is
unresponsive or the application requests are not being served. All of us
have a need to do some sort of performance tuning and often are
overwhelmed with the situation in hand. This only creates confusion and
we resort to the common resolution – using a search engine.

We want to get back to basics when working with Performance Tuning
SQL Server.

SOLUTION OVERVIEW

1

Starting Performance Tuning..2

SQL Server Tools – Top 6... 4

 SET STATISTICS ON.. 4

 SQL Server Profiler.. 5

 SQL Server Management Studio... 6

 SQL Server Error Logs...6

 SQLDiag..6

 Graphical Execution Plans..7

5 Generic Database Tips .. 7

Conclusion... 8

TABLE OF CONTENTS

2

STARTING PERFORMANCE TUNING
Performance tuning is the methodology of systematically identifying bottlenecks in applications and

improving performance. There are a number of places to start performance testing. Performance for an

application can be a bad on various dimensions:

Though each of the above can be tuned in di�erent ways and configurations, in essence performance

tuning is fundamentally about proper planning. Let us walk through this process first.

Knowing your system’s architecture is the first step. Always keep your application’s process flow diagram

handy to understand how data will flow inside the system. This diagram will also aid in brainstorming future

enhancements. The purpose of this step is to make sure everyone working on the application is familiar

with the process that is being used.

Operating System.
Deployment – Virtualization or not.
Platform - Web Server, Frameworks used etc.
Database.
Configuration Settings.

Running error-free.
The environment is stable.
The machine resources are not saturated.

Review System Architecture

End users often give us a generic statement like – “Application is not working”, “Application is unusable”,

“Application is erroring” etc. They are telling us something is wrong in the system but it doesn’t help us in

solving the situation.

When such statements pop-up it is important to know that your system is:

Knowing Workload and Environment

3

Are there are any periodic / regular issues (failures, errors, deadlocks, timeouts etc.)?.
Check for common issues like: disk space utilization, memory utilization, CPU peaks, Network

interface errors or load.

.
Are there any anomalies that point you to possible cause(s) of slowness in the system?.

Audit your environment:

The most common tools to start performance testing are tools available out-of-box with the Operating

System. Observe the system under PerfMon with a collection of counters (once every 10 seconds) which do

not adversely a�ect performance. Look for trends and anomalies in the graphs collected.

Gather Data

When you have a system running in production, you start by collecting an initial set of data. The first time

the data is collected, it is called as baseline measurement. This denotes the normal behavior of the

system – CPU, Memory, Disk, Network, Query performance etc.

If a baseline is available and when the system is stalling or giving errors, we can always collect the data

again to see where the deviation in numbers are.

Create a Baseline

Though PerfMon is a great starting tool, find out is there are any counters indicating a performance

problem: excessive exceptions, excessive recompilations, page splits, paging, disk queuing or other

queuing?

We recommend starting with PerfMon because we will be able to get an idea of where a possible problem

is. Once we have found the high-level reason for performance bottleneck, we can always use the other

tools to find the root cause.

If you identified a possible high-level issue – try to understand from workload what changed recently. If

there is sudden depletion of memory and you see a pattern of too many reporting queries in the

workload – we have a starting point.

Analyze Data and Identify Issues

If you find an issue, the next step is to validate your theory in a test environment. It is critical to be 100% sure

of the next steps before taking bold actions. It is highly recommended that you make one change at a time

to check how the system responds to that change. If you know the performance was because of a recent

upgrade / deployment then -

Generate Alternatives

4

SQL SERVER TOOLS – TOP 6
A lot of times the basic tools are the ones that help us a lot. We are a big fan of the statistics T-SQL

commands, which can give us a wealth of information in a simple way. We will start our journey with query

tuning which is one of the most requested item.

The below table will summarize what is available in SQL Server for query tuning requirements for more than

15 years.

Implement a quick fix or rollback the recent changes to see the e�ect..
Disable a portion of code, to determine the impact on execution time if queries are running slow..
Check if reads can be scaled out to another server for reporting needs..

Did the last change make an improvement? If not, examine why..
Determine if it is necessary to back-out the last change. Even if it was successful, does it disable

something that is needed for continued tuning?

.
After fixing any problem, evaluate the results and create a new baseline. This should be the new

baseline when the system is in a normal state after new code changes.

.

Once you find a possible cause in the test environment and a possible fix for the same, verify the theory

with results on the production box. Check if it made any di�erence to the system.

Test Results

Record every activity that has been done on the production box from time to time. It is always advisable to

have a secure, reliable backup handy at any time so that you can always rollback to the last reliable state.

Though you started the above using PerfMon, let us look at some of the fundamental tools one can use

with SQL Server.

Document Everything

SET STATISTICS ON

5

As mentioned before, these SET commands have been with SQL Server for a while and are really powerful

in getting a firsthand view of how a query runs / performs.

SQL Server Profiler is yet another tools that can be useful when trying to diagnose what is going wrong in

our SQL Server environment. This tool has been enhanced in every release. This tool is basically a tracing

tool for our SQL Server. It listens to all the incoming tra�c and collects information on what is getting

executed in the system.

Profiler has rick interface to create, manage, analyse and reply trace data. It also allows us to use templates

to save them in trace files for later analysis and reply.

Though SQL Server Profiler is a deprecated feature from SQL Server 2012 version, it is good to know the

various building blocks that are part of Profiler:

SQL SERVER PROFILER

STATISTICS TIME ON Gives us information about how much time was used for parsing and

compilation. Post the execution of a given query, it also shows the CPU

and elapsed time for executing a particular query.

STATISTICS IO ON As the name suggests – it shows the table, scan counts with logical and

physical reads for a given query. This has been one of the handy tools

if you want to identify which table in a complex query is causing all the

reads.

STATISTICS PROFILE ON This shows a profile of the execution plan along with the result set from

query. This can be used for advanced tuning techniques. To execute this

command, one needs to have SHOWPLAN permissions on the objects

part of the query.

STATISTICS XML ON Shows the XML view of the execution plans

Event These are actions generated by the SQL engine like Logins, Insert

statements, Update statements, start/end of SP, errors, locks acquired,

security checks, cache additions etc.

Event Class We define the type of event to be traced. Typical example is Audit Login,

SQL: BatchCompleted etc.

Event Category A category defines a logical grouping of events inside SQL Server Profiler.

Data Column These are attributes of an event class. For example: BinaryData,

TextData, ApplicationName, LoginName, CPU, Duration, SPID etc.

Template This defines the configuration for a trace with event class to monitor.

Saved as a file (.tdf) this gives us a starting point for quick trace

initialization.

Filter When a trace is initialized we can define criteria to filter the data

collected by this trace. The idea here is to collect relevant data while

keeping the trace file under check.

6

<SQL Server install location> \110\Tools\Binn\sqldiag.exe (for SQL 2012 installation).
<SQL Server install location> \100\Tools\Binn\sqldiag.exe (for SQL 2008 installation).
<SQL Server install location> \90\Tools\Binn\sqldiag.exe (for SQL 2005 installation).

From SQL Server 2005, SQL Server Management Studio (SSMS) is the one stop tool for configuring,

managing, accessing, administering and developing with SQL Server. The current version of SSMS can

work with SSAS, SSRS, SSIS, Azure databases and more. The SSMS is built on top of Visual Studio shell and

can be of great help in troubleshooting. Two things capabilities which is worth mentioning here:

Activity Monitor – This can be invoked using the toolbar or CTRL+ALT+A. This is a details page allows us to

have a quick glance on Running Processes, Resources Waits, Data File IO access and Recently Expensive

Queries. Apart from it, is also shows a graphical view of Processor Time, Waiting Tasks, Database IO and

Batch Requests/sec.

InBuilt Reports – There are a number of reports inbuilt with SSMS. Right click at the database node to view

DB specific reports and right click on the Server node to get access to server specific reports. Some of the

reports like Schema Change History can be handy in understanding the DDL commands executed recently

inside the database / server. The schema change history report depends on the default trace to be running.

SQL SERVER MANAGEMENT STUDIO

Error logs perse are not a performance tool, but it contains a wealth of information which can come handy

when there are performance problems. When SQL Server starts it logs a number of information like: # of

processors available and how many SQL Server is using, total available memory, current version of SQL

Server and Windows, Authentication mode selected, startup parameters, default collation used etc.

Additionally, if configured, error logs can also contain information about deadlocks or stack dumps.

SQL SERVER ERROR LOGS

SQLDIAG is a configurable data collection tool. “Out-of-the-box” it can collect event logs, Performance

monitor logs, Profiler trace for both SQL and AS, blocking script, SQLDiag reports, machine configuration

information to target performance and stress testing. SQLDiag can be configured to collect virtually any

type of custom diagnostic, including T-SQL scripts and commands, batch files and executable, VBScripts

and other ActiveX scripts, file copies, file lists, registry queries and saves etc. Tool also leverages its

execution at pre-determined time. For example if we have configured a stress test script at 10 pm given

date and need logs to collected starting from this time and you are not going to be available at that time,

just execute this tool and pass above mentioned time as parameter and done.

SQLDiag is installed as part of SQL 2005 onwards tools; you don’t need to install extra add-ins. The

executable and its associated xml file is installed at

SQLDIAG

7

5 GENERIC DATABASE TIPS

Windows Error Logs.
Task Manager.
Distributed Replay Utility.
Extended Events.
Database Tuning Advisor

Database Console Commands (DBCC)

Built-in DMV and DMF functions

.

.

.

Well maintained indexes can prevent performance degradation caused by low page density level and/or

logical and extent fragmentation. Poorly planned maintenance can cause severe performance problems.

Rebuild your indexes when the fragmentation levels are above 30% and create a maintenance plan which

will run at specific time of the week / day.

Maintain Your Index

This is a simple tip. Look out for deadlocks in the systems and try to find the root cause for the same. If

there are blocking threads, check why the system is taking longer than expected time to execute. We can

use “Blocked Process Threshold” option to monitor blocking behavior in the system which are abnormal.

Watch Out for Blockings and Deadlocks

Where possible, don’t update or read a large table all at once. Full table reads or updates can overwhelm

servers and/or networks. In addition, they may trigger lock escalation and result in unintended blocking.

Furthermore, when data modification is long running due to transaction batch size, it may take a long time to

roll back when you decide to roll back the transaction. Try to do modifications in batches and in smaller

chunks of transaction.

Large/Long Transactions can be Dangerous

An execution plan is the steps that SQL Server tools behind the scenes to execute a query. To decode an

execution plan is an art. Most programmers / DBA’s use this powerful tool to see where their queries are

spending most of the time.

The execution plans give a blueprint of – what are the logical / physical operators used, estimated rows vs

actual rows, if parallelism was used, number of rows from a given operator, how filter conditions were

applied, which indexes were used and much mode.

Some of the other tools that we can use include:

GRAPHICAL EXECUTION PLANS

8

CONCLUSION

Some tables are full of records that will no longer be used and are filtered out by date range or other

conditions. Large tables make indexes less e�cient and potentially the data is less contiguous on the disk.

“Cleaning as you go” won’t work in all situations, so you might need to create a process to scrub tables

periodically. In some cases, a combination of both strategies is necessary.

Consider aging Out Old Data

When heavily used stored procedures recompile due to various reasons (such as set option change or temp

table reference in a cursor), this will use a schema stability lock and block other spids that execute the same

stored procedure. Use SQL profiler to capture the SP: Recompile event with objected and eventsubclass

columns to identify the stored procedure that is getting recompiled and the reason for the recompilation.

Take corrective actions based on the eventsubclass column values

Performance tuning is an art. Most often we are pushed to explore new ways to do performance tuning and

testing. In this whitepaper, we looked at a possible approach to performance troubleshooting. Start from

basic tools to find a high-level problem area and then dig deep into solving the problem. Just like when we

are sick, the doctor asks a number of questions, does a number of tests before concluding what is wrong. In

a similar way, we need to do the basic initial diagnosis, do proper tests and finally find what would be a

proper solution to performance problems in our SQL Server database.

Recompilation can be Fixed

PINAL DAVE

Pinal Dave is a Developer Evangelist and Technology Enthusiast. He has authored 11 SQL Server database
books, 11 Pluralsight courses and have written over 2900 articles on the database technology on his blog
at a http://blog.sqlauthority.com. Along with 9+ years of hands on experience he holds a Masters of
Science degree and a number of certifications, including MCTS, MCDBA and MCAD (.NET).,

ABOUT THE AUTHOR

9

TRY IDERA’S SQL Diagnostic Manager

Performance monitoring for physical, virtual, and cloud SQL Servers..
.
.
.
.

Deep query analysis to identify excessive waits and resource consumption

History browsing to find and troubleshoot past issues

Adaptive & automated alerting with 100+ pre-defined and configurable alerts

Capacity planning to see database growth trends and minimize server sprawl

SCOM management pack for integration with System Center

24X7 SQL PERFORMANCE MONITORING, ALERTING AND DIAGNOSTICS

Try it FREE for 14 days.

https://blog.sqlauthority.com/

https://www.idera.com/productssolutions/sqlserver/sqldiagnosticmanager/freetrialsubscriptionform

https://www.idera.com/productssolutions/sqlserver/sqldiagnosticmanager?utm_source=wp-sql-5reasonsslow&utm_medium=inasset&utm_content=wp&utm_campaign=sqldm

https://www.idera.com/productssolutions/sqlserver/sqldiagnosticmanager?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=starting-performance-tuning#getStartedForm

