
SQL Server Whitepaper
®

DEMYSTIFYING
DEBUGGING
TECHNIQUES
WITH
SQL SERVER

BY PINAL DAVE

The greatest happiness for a father is to see our children grow in front of our
very own eyes. My daughter has been my source of inspiration for a number of
things that I face in life. It is like living your childhood all over again with a twist.
I have nothing to complain about but everything to cherish. Recently, I had a
unique opportunity to go to my daughter’s school for the parent-teachers
meeting.

In my last visit to the school, I had an opportunity to observe almost every
parent around and how they were handling their kids. There was something I
noticed consistently that is worth a mention. The kids surely have a lot of
energy and are filled with questions. There wasn’t a minute where I would hear
a kid ask – “Why, papa?”, or “Why is it like this?” This was the consistent
questioning to understand more about things happening around them, and
they are explorers. The more I watched the whole exercise, the more I started
enjoying the day with my daughter. It taught me interesting things that I think
are worth sharing. If you ask me in software terms, the kid is debugging each
and every result in front of them as they understand the reason.

Just the need to question why things are di�erent and why they are behaving
the way they are is a typical instinct of a Developer writing code. Many times I
write some pseudo code and when I translate it into actual code, I get ba�ed
with why the result is so di�erent while my logic says something else. This
leads me to debug the whole exercise.

As a SQL Server developer, the fundamental fun of debugging started in my
early days using the PRINT command inside SQL Server. I personally get a
chance to see these debugging practices still alive in lot of production code. In
this whitepaper, let me take a chance to introduce you to the debugger
techniques introduced with SQL Server 2012. If you are a Visual Studio C# or a
.NET developer, these techniques are so similar that you will never forget
them. Yes, it is important to know and note that the SQL Server Management
Studio IDE is based on the Visual Studio shell. Hence the goodness of VS
carries forward with Management Studio too.

INTRODUCTION

SHOW ME THE CODE!!!
The idea of this paper is not to write lengthy code blocks and show you how a debugger might potentially work. We will use
a simple looping block as shown below to check how a debugger will work.

The code is simple as it initializes a variable. We have a WHILE block which loops while incrementing the variable by 20.
In every 200 values achieved, we are printing the same as part of the code. The code is proposed to run till 10000.

-- Simple loop for Debugger Basics
DECLARE @loop INT = 0
WHILE (@loop < 10000)
BEGIN
 IF (@loop%200 = 0)
 -- Used to track our values
 PRINT @loop

 SET @loop += 20
END

There is absolutely no rocket science to this code. Let us assume this can be code that runs in your production environment
where we need to debug how the variable value increases in each of the passes.

DEBUGGER – GETTING STARTED
There are a number of ways we can start the whole debugging process. Below shown is our debugger option from the toolbar.
Select the Debug tab, hover over Windows and select Breakpoints.

The other way to start the debugger at a specific location is to use the left side ribbon – a “Grey Band” in our SQL Server
Management Studio script window. For simplicity reasons, I have shown this in the figure below. So as you can see, enabling
the debugger is really easy now.

Once the debugger has been enabled and we need to go through the code, we need to know what the other options available
for debugging are. The toolbar shows us the list of options we can start using with the debugger. Some of them include Break
All, Stop Debugging, Next Statement, Step Into, Step Over and so on.

WATCHING FOR VALUES
We know the values can be easily found using the PRINT statement inside our code block. But once the debugger is started,
enable the Locals window. This is the window that allows us to look at all the local variables in the current batch. For our
example, the local variable in the batch is @Loop.

The same value as per the flow of code gets printed in the message window too as shown in the diagram above.

ADVANCED DEBUGGING OPTIONS
Watching for the locals is just one part of the story. As developers
there are advanced options that we can start using with SQL Server
Management Studio too. If we get an opportunity to right click the
Debug point, we will be presented with a list of options that I would
like to explain:

 • Condition
 • Hit Counter
 • Filter
 • When Hit

All of these options are handy and can be of great help to
developers who are debugging their code. In the next section, we
will talk about them quickly to understand how they can be used.

BREAKPOINT CONDITION
As soon as we select this option, we will get a dialog like the one shown below. Here we can add an additional condition which
when satisfied the debugger will prompt. In our example we have put an additional condition that the debugger needs to stop
when we hit multiples of 80.

BREAKPOINT HIT COUNT
This option lets us configure what needs to be done when the breakpoint is hit or when the codeflow reaches the breakpoint
location. We have a number of options from “break always”, “when the hit count is equal to something”, “when count is a multiple
of something” and so on. Use these if you want to skip to specific code flow when the variable hits one of these conditions.

BREAKPOINT FILTER
In this option for breakpoint, we are adding additional filters to the code block. Assume a case when the code is being
run in a multi-user scenario. Here we would like to restrict the condition so that the code needs to be debugged only
when the machine name is from Pinal. These additional filter blocks can be configured in this “Filter” block. In the
below diagram we have added a filter to debug only when the machine is “PC-Pinal”.

WHEN A BREAKPOINT IS HIT
This is like our very own conventional block of PRINT statement that we can also write in the options. It shows what can be done
as we hit the breakpoint and how we can visualize the values di�erently. There are additional functions that can be added as
part of our print which can vary from Process ID, Thread ID executing and so on. In our figure below, we have added the value
of @Loop to be printed whenever we reach the breakpoint.

A typical output of the breakpoint is hit is shown below. We are printing all the values as we cross the Breakpoint location.

If we keep playing around with what is available with the Visual Studio projects, we can explore more options. As a developer of
SQL Server, these are wonderful additions to the existing PRINT statements.

USEFUL DEBUGGER SHORTCUTS
We have shown a number of shortcut keys at various points in this whitepaper. Here is a summary of the shortcut keys.

Toggle breakpoint

Enable breakpoint

Stop debugging

Step into

Step over

Step out

Delete all breakpoints

Display the Breakpoints window

Display the Locals window

F9

CTRL+F9

SHIFT+F5

F11

F10

SHIFT+F11

CTRL+SHIFT+F9

CTRL+ALT+B

CTRL+ALT+V, L

ACTION SHORTCUT

Display the Immediate window

Display the Call Stack window

Display the Threads window

Start or continue debugging

Show next statement

CTRL+ALT+I

CTRL+ALT+C

CTRL+ALT+H

ALT+F5

ALT+NUM

As we wrap up this concept, I would like to advise that the person needs to have SYSADMIN privileges to start debugging
inside SQL Server. This is one of the pre-requisites to play with debugging capability. If the end user aborts the debugging
session in the middle, then we will be presented with the below error message:

Msg 28102, Level 16, State 1, Line 10
Batch execution is terminated because of debugger request.

Pinal Dave is a Developer Evangelist. He has authored 11 SQL Server database books, 14 Pluralsight courses and

over 2900 articles on the database technology on his blog at http://blog.sqlauthority.com. Along with 10+ years of hands

on experience he holds a Masters of Science degree and a number of certifications, including MCTS, MCDBA and MCAD

(.NET). His past work experiences include Technology Evangelist at Microsoft and Sr. Consultant at SolidQ.

CONCLUSION

IDERA understands that IT doesn’t run on the network –

it runs on the data and databases that power your business.

That’s why we design our products with the database as

the nucleus of your IT universe.

Our database lifecycle management solutions allow database and

IT professionals to design, monitor and manage data systems with

complete confidence, whether in the cloud or on-premises.

resources to help you do more with less while giving you the

knowledge to deliver even more than you did yesterday.

Whatever your need, IDERA has a solution.

ABOUT THE AUTHOR

Debugging, though a tough option inside SQL Server, has surely come a long way with the integration with Visual Studio to
make SQL Server Management Studio much more powerful. These additions to SSMS have surely increased the productivity
of Developers and DBAs alike.

IDERA.com

SQL Query Tuner

• Visually tune complex SQL queries

• Load test in simulated production environments

• Streamline SQL query tuning for SQL Server

Start for FREE

TROUBLESHOOT AND OPTIMIZE DATABASE SQL QUERIES

https://www.idera.com/productssolutions/sqlserver/sql-query-tuner?&utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=sqlquerytuner#getStartedForm

