
SQL Server Performance

S Q L S e r v e r P e r f o r m a n c e T u n i n g E x p e r t a t S Q L A u t h o r i t y . c o m

®

7 INDEXING
TIPS TO
IMPROVE
SQL SERVER
PERFORMANCE
BY PINAL DAVE

https://www.idera.com?utm_source=datasheet&utm_medium=inasset&utm_campaign=embdboptimizer

SQL Server performance is always one of the most challenging subjects. Hard drives
are getting cheaper and cheaper, and data is growing exponentially. With this new
pattern, we all have a significant challenge. In the database world, though, we now
have new problems a�ecting performance. Here are a few questions that keep
coming up in various systems in the industry:

1

INTRODUCTION

Throughout the years I have seen and solved many similar issues. I have seen
many bad practices implemented in SQL Server at the server and database level.
There are hundreds of tips that one can practice to keep a database at optimal
performance. The purpose of this document is to highlight a few best practices
that can give maximum benefits to the SQL Server system. Out of thousands
of best practices, I have selected the seven best practices related to indexes.

• A query which was running quickly now takes too long to run
• Our report is now running very slow
• During data import everything gets slow
• Every day during a specific period we are facing many deadlocks
• Queries are continuously responding with time-outs
• SELECT queries are slower when INSERT, UPDATE and DELETE are happening
• …and many more…

TIP ONE
DROP UNUSED INDEXES

TIP TWO
CREATE MISSING INDEXES

2

Indexes are commonly created to gain additional
performance from the system. It is very common for
a new DBA to inherit index systems. When a new DBA
gets a system which has been there for a long time,
there are always lots of indexes already created.

New DBAs often do not have the understanding or
documentation of why all of those indexes were created.
The new DBA cannot drop indexes created by earlier
admins and create a few more to accommodate new
requests. The uncertain history of the indexes leads to
the issue that there are way more indexes than needed.

Lots of unused indexes are an extra burden on SQL Server.
Every time any field is updated when referenced in the
index, the index also has to be updated. Updating the
index is an additional load on the SQL Server engine. If you
have an index maintenance script, it will even be wasting
some resources on rebuilding/reorganizing indexes.

The best practice for unused indexes is to drop them.
When dropping indexes, one has to be very careful that
they do not drop any index which is useful to queries by
mistake. It is recommended to evaluate this unused index
script on the server after running it continuously for a
while without restarting the services or server.

Unused index scripts are based on Dynamic
Management Views (DMV) and will return lots of results.
Select the top 2-3 indexes at a time and drop them on the
development server. Keep your server on the watch for a
while and, if you find it appropriate, drop them on the
production server too.

Indexes are created to improve performance. As important
as it is to drop unused indexes, it is also essential to create
missing indexes. It is quite reasonable for developers to
keep on writing optimal queries and changing the queries
to suit new requests of the end users. The requirements of
the end users always keep on improving, and developers
follow up by changing the query.

The ever-changing queries have a circular e�ect on
the indexes. The indexes created for specific queries
become out-dated when the underlying queries change.
As discussed in the earlier topic, we should drop the
unused index. However, we must not forget to check the
most relevant indexes against the recently running queries.

Missing index scripts provide the details of the indexes
which are most beneficial to the queries. When any query

plan is generated, it is always looking for the most optimal
index. When the most optimal index is not found, SQL
Server Engine uses another index which is the next best
choice. It is a good idea to create an index which is going
to be the most e�ective one.

The missing index script is based on DMV and will return
lots of results. Select the top 2-3 indexes at a time and
create them on the development server. Keep your server
on the watch for a while and, if you find it appropriate,
create them on production server too.

You can download the script from here:
http://bit.ly/UnusedIndex

You can download the script from here:
http://bit.ly/MissingIndex

3

TIP THREE
REMOVING DUPLICATE INDEXES
Just like unused and missing indexes – duplicate
indexes are another fundamental concept one must
consider. As most developers inherit the database from
previous developers, the understanding of the database
schema and indexes is not usually at its best. Quite
commonly, when a new index is needed developers do
not look at the definition of the existing indexes; they just
create the new index as per their requirement. Eventually,
there will be multiple indexes with the same definition
in the system.

There is absolutely no point to having two indexes
with the same structure in any database system. This
duplicate index not only takes up space on the hard drive
but also reduces the performance. All the INSERT, UPDATE
and DELETE queries will have to now update two similar

sets of the data on every single occurrence. As there
are duplicate indexes, only one of the indexes is used
when any query is executing, making the duplicate
index redundant.

The best practice is to drop the duplicate index
and keep any database free from additional overhead.
Again, please be sure to verify that the index is indeed
a duplicate before dropping it.

You can download the script from here:
http://bit.ly/DuplicateIndex

TIP FOUR
SIGNIFICANCE OF CLUSTERED INDEXES
More than best practices, it is essential to understand
the significance of the clustered index. The prevailing
opinion and general best practice suggest that any table
should have a clustered index. If your table is tiny and
the database is of insignificant size, this property can be
ignored. However, I suggest understanding the best
practice related to clustered indexes.

Another common practice is to create clustered indexes
on the columns which are often searched in the
database. An additional advantage is that when the first
set of the data is retrieved the next collection of the
information which is commonly queried is placed
adjacent. Clustered indexes also help improve
performance when the unique values are retrieved.

Here are a few best practices for clustered indexes:

• Columns which have large numbers of unique,
 distinct data may be good candidates for
 clustered indexes.

• In an OLTP workload the standard practice is to
 create clustered indexes on the primary key as
 data is often looked up using the same keys.

• In SQL Server when a primary key is created,
 it automatically creates the clustered index if it does
 not already exist. There are some rare cases when
 primary keys are on di�erent columns than clustered
 indexes. It is indeed a good practice to have
 clustered indexes on unique values (e.g., primary
 keys) as it will avoid adding a unique identifier
 on the clustered index.

Keep the width of the clustered index as narrow
as possible.

You can read more about it here:
http://bit.ly/PKandIndex

4

TIP FIVE
COLUMN STORE INDEXES
FOR DATA WAREHOUSING
There are two kinds of storage in the database: Row Store
and Column Store. Row store does exactly as the name
suggests – it stores rows of data on a page – and column
store stores all the data in a column on the same page.
These columns are much easier to search – instead of a
script examining all the data in an entire row whether the
data is relevant or not, column store queries need only
to search a much smaller number of the columns.

Using an index storing only column data increases both
search speed and hard drive use. Additionally, the column
store indexes are heavily compressed, which translates
to even more significant memory e�ciency and
faster searches.

Though this sounds very exciting, it does not mean that
every single index should be converted from row store
to column store index. One has to understand the proper
places where to use row store or column store indexes.

A column store index stores each column in a separate
set of disk pages, rather than storing multiple rows per
page as data traditionally has been stored.

Here are two scenarios where column store indexes
should be considered:

1) Use a clustered column store index to store
 fact tables or large dimensions table in data
 warehousing applications

2) Use a nonclustered column store index to perform
 real-time analysis of transaction applications

You can read more about it here:
http://bit.ly/ColumnStoreIndex

TIP SIX
SQL SERVER 2016/2017
CARDINALITY ESTIMATION
A common question that gets asked in many SQL Server
forums is whether it is worth upgrading to SQL Server 2016
or SQL Server 2017. The answer is straightforward, and it is
the one word – YES!

SQL Server 2016 and 2017 have introduced many new
features which help SQL Server to run faster out of the box.
When a user upgrades their database to the latest version
of SQL Server, they can take advantage of the most recent
algorithms and improvements in the SQL Server.

The most prominent improvement in SQL Server
2016/2017 is the updated cardinality estimation algorithm.
The optimized cardinality algorithm guides SQL Server
Optimizer Engine to come up with better execution plans.
A better execution plan uses SQL Server indexes
e�ciently leading to better overall performance.

It is essential to remember to use the latest cardinality
estimation algorithm; the database should be using the
newest compatibility as well. The compatibility level setting
for SQL Server 2016 should be set to 130, and for SQL
Server 2017 it should be set to 140. If you are using SQL
Server 2016 or 2017, but your database compatibility is set
to the previous version of SQL Server, you may not be able
to use the power of the latest improvements in algorithms
in SQL Server engine.

You can read more about it here:
http://bit.ly/CompatLevel
and
http://bit.ly/Cardinality

5

TIP SEVEN
ADDITIONAL INDEXING BEST PRACTICES
As mentioned earlier there are many best practices related to indexes. I am listing a few here, in no particular order:

• The primary key is usually a good candidate for a clustered index.

• Keep the width of the index as narrow as possible.

• GUID is not a candidate for a clustered index (except in extreme cases) as it may lead to higher fragmentation
 and reduced performance.

• Any column which has high distinctive values (i.e. column is increasing, unique, identity column) is a good
 candidate for a clustered index.

• When creating multiple column indexes, it is usually a good idea to have the most selective columns as the first
 column in your index. (Verify this by a thorough test; this can vary case by case. When there are no other external
 conditional influences, this is considered as best practice.)

• Do not add indexes on every single column in the table; indexes should be carefully analyzed before creating them.

• Fill Factor 0 or 100 is the default value for the server. The index can be adjusted to the appropriate value. Higher fill
 factors for less frequently changed data and lower fill factors for more regularly changed data is recommended.

FINAL NOTE
Try all the queries on the development server first. Test all the changes on the development server and validate all the results.
Deploy to production only after careful consideration. Take all the advice here as a best practice but not as a strict rule. And if
needed, evaluate a third-party tool to help you with your SQL Server index performance issues.

ABOUT PINAL DAVE:
Pinal Dave is a SQL Server Performance Tuning Expert and an independent consultant. He has authored

11 SQL Server database books, taught 21 Pluralsight courses, and has written over 4500 articles on database

technology on his blog at https://blog.sqlauthority.com. Along with 16+ years of hands-on experience, he holds

a Masters of Science degree and many database certifications.

• Streamline tuning of SQL code on SQL Server from one interface

• Tune SQL like a pro with automated performance optimization suggestions

• Tackle complex SQL queries with visual SQL tuning diagrams

• Pinpoint problem SQL with database profiling of wait-time analysis

• Load test alternative SQL queries in simulated production environment

SQL QUERY TUNER

IDERA.com

Start for FREE

Automate SQL Tuning and Profiling

(SQL Query Tuner is an add-on for SQL Diagnostic Manager for SQL Server)

https://www.idera.com?utm_source=datasheet&utm_medium=inasset&utm_campaign=embdboptimizer
https://www.idera.com?utm_source=datasheet&utm_medium=inasset&utm_campaign=embdboptimizer
https://www.idera.com/productssolutions/sqlserver/sqldiagnosticmanager/freetrialsubscriptionform?&utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=sqldiagnosticmanager
https://www.idera.com/dboptimizer-sql-database-optimization/freetrialsubscriptionform?utm_source=datasheet&utm_medium=inasset&utm_campaign=embdboptimizer
https://www.idera.com?utm_source=datasheet&utm_medium=inasset&utm_campaign=embdboptimizer
pdyke
Stamp

IDERA understands that IT doesn’t run on the network –
it runs on the data and databases that power your
business. That’s why we design our products with the
database as the nucleus of your IT universe.

Our database lifecycle management solutions allow
database and IT professionals to design, monitor and
manage data systems with complete confidence,
whether in the cloud or on-premises.

educational resources to help you do more with less
while giving you the knowledge to deliver even more
than you did yesterday.

Whatever your need, IDERA has a solution.

https://www.idera.com?utm_source=datasheet&utm_medium=inasset&utm_campaign=embdboptimizer

