
SQL Server eBook

Learn tips and techniques for using SQL Server Management Studio (SSMS)

®

SQL SERVER
IN SIMPLE
WORDS

BY PINAL DAVE

TABLE OF CONTENTS

© Copyright 2016, IDERA, Inc.

SECTION ONE : ZERO TO HERO WITH SQL SERVER MANAGEMENT STUDIO..............................1
 INTRODUCTION ..1
 SSMS STARTUP1 ..1
 OBJECT EXPLORER DETAILS – LESSER KNOWN GEMS ...3
 CONCLUSION..7

SECTION TWO : BLOCKING AND LOCKING TROUBLESHOOTING..8
 INTRODUCTION ...8
 ACID INTRO..8
 LOCKING TYPE BASICS ...8
 BLOCKING BEHAVIOURS ..9
 UNDERSTANDING BLOCKING AND WAITS ..10
 KNOWING YOUR DEADLOCKS .. 11
 TOOLS TO IDENTIFY BLOCKING..12
 CONCLUSION.. 17

SECTION THREE : DEMYSTIFYING DEBUGGING TECHNIQUES WITH SQL SERVER.................18
 INTRODUCTION ...18
 SHOW ME THE CODE!!! ...18
 DEBUGGER – GETTING STARTED...19
 WATCHING FOR VALUES ...20
 ADVANCED DEBUGGING OPTIONS ... 21
 USEFUL DEBUGGER SHORTCUTS ... 24
 CONCLUSION... 24

SECTION FOUR : NUTS AND BOLTS OF PERMISSIONS AND SECURITY.................................... 25
 INTRODUCTION ..25
 PRINCIPALS ...25
 LOGINS AND USERS .. 27
 SPECIAL USER SYSADMIN...29
 CONCLUSION...30

SECTION FIVE : SQL SERVER SECURITY PRACTICES .. 31
 INTRODUCTION ... 31
 AUDIT LOGINS... 31
 AUTHENTICATION AND DISABLE SA .. 32
 VIEW DATABASE PERMISSION... 33
 SYSADMINS HAVE SUPER POWERS.. 33
 HOW TO PROTECT FROM SYSADMINS? ... 34
 CONCLUSION... 37

ABOUT THE AUTHOR..37

INTRODUCTION

SECTION ONE
ZERO TO HERO WITH SQL SERVER
MANAGEMENT STUDIO

1

C:\> ssms

The world is full of interesting challenges and we are constantly running every single day chasing our dreams. Especially in the
software ecosystem, it is not about literally our dreams but about the release scheduled in the next couple of months. We are
on a constant run every single day and we stop appreciating the journey we are taking.

I am reminded of an interesting conversation I had with a friend few months back. In a casual visit with family, I saw his cousins
had come over from out of country and they seemed to be really interested in a number local attractions in their short visit.
I took note of a few names that came out in the interactions and promised my daughter to take her there soon. The whole
incident made me think in a di�erent way. Being almost in the city for more than 5 years, I am a long way from exploring what
the city has to o�er. Our lives are always in the fast lane and as mentioned before, we forget to enjoy and relish the journey.
This analogy has so much to do with this whitepaper.

As a developer or DBA, we have our share of time working with SQL Server. In this process of working with SQL Server, the
default tool of our choice is always SQL Server Management Studio. Similar to the incident shared before, we spend so much
time on this fun tool that we hardly appreciate or explore what the tool has to o�er. In this whitepaper, we will look at some of
the capabilities available with SQL Server Management Studio that will make each one of us more productive.

SSMS STARTUP
The most common way to invoke SSMS is using the shortcut from our start menu. If you are on Windows 8 machine, then we
can search for SQL Server Management Studio to invoke the program.

There is yet another method to invoke SSMS by using the command prompt. In fact, the shortcut is SSMS.

2

C:\> ssms /?

This will bring up the SSMS just like the shortcut we invoked before. The more interesting way to look at this shortcut is
to check the various options available with SSMS command line parameters. To check them, use the following command:

Invoke SSMS with Integrated Authentication to the default server.
C:\> ssms -E

Invoke SSMS using Server name, UserName and Pwd.
C:\> ssms –S BigSQL –U Pinal –P C0mp!exPwd

This bring us the various options as shown. The most interesting option here is the capability to use the –S option like
SQL Server Name and the steps it normally takes to make an SSMS studio completely operational for work would include
close to 3-4 clicks. If we use the –E option, then we can load the SQL Server Management Studio directly with a query
window. This is the simplest way to get productive in one go.

Another extension to this tip is the ability to change how the SSMS Window starts. If we check the Tools  Options Dialog box
we can see:

There are a number of options to choose from and the default is Open Object Explorer. We have the choice to change to any
of the other values, and this will take e�ect next time we call SSMS.

DELETE MULTIPLE OBJECTS

OBJECT EXPLORER DETAILS – LESSER KNOWN GEMS

3

The best way to learn about the various capabilities of Object Explorer Details is by using them daily at your work. But how can
one use them, if we are not sure of their capabilities? I have personally seen this Explorer as a productivity enabler.

To bring up the Object Explorer Details pane, use the F7 shortcut or it can be accessed from Toolbar  View  Object
Explorer Details. Whenever I talk about the Details pane, developers sometimes get confused with the standard Object
Explorer pane that they are used to in general.

Personally, I have seen this as a neat trick to ask at the local user group meetups every now and then. The question I ask is,
“Is there a way to drop multiple objects in one key stroke?”. And the bonus trick question is, “Is there a way to script drop of
multiple objects in one key stroke?” Either way, the simple answer to this is with Object Explorer Details.

To achieve this, get to the correct folder from your Object Explorer – let us assume this to be the Table node. From the Object
Explorer Details pane, select the two objects and press the DELETE key. We will be presented with a dialog to delete and from
the top toolbar, we can also script them out easily.

EXPLORING COPY DATA CAPABILITY

4

PROPERTIES FOR OBJECTS / NODE
Depending on where the Object Explorer Details node is, we can get some interesting and additional information which
might take us a lot of time. Here are a couple of these details which I thought would be valuable to share.

The next two images show us completely di�erent data because the first one is around Server Level information and the
second at an individual DB level.

All of these data are available in DMVs. But as a DBA, having these handy in a single click via SQL Server Management Studio
is really powerful. Think about questions like:

 • How much RAM is on the Server?
 • How many Databases are available on a given instance of Server?
 • What is the Data Space used by each Database?
 • How much free space is available on a given Database?
 • When was the last backup taken for a given Database?
 • What are the recovery models and compatibility levels for current Databases?

These are simple yet powerful answers we can get quickly using the details pane.

Think about a requirement to beautifully represent data about our database in a graphical form. For example, we want to build
a graph of top 10 tables by size within our database. This can be easily achieved using the following steps:

 1. Get to the Databases and then Tables folder in Object Explorer Details.

 2. Right click the top ribbon and add column – Data Space Used (KB) to the details pane.

 3. Remove other columns not of interest from the Object Explorer Details just like how we added a column
 in the previous step.

 4. Now click on this column to sort data in descending order.

 5. Next select the top 10 or how many rows as desired.

 6. Press Ctrl + C to copy the contents into the Clipboard. If you were wondering, yes – this does work.

 7. Open Excel and paste the data.

 8. Press Alt+F1 to build a graph.

TYPE AND NAVIGATE

5

Shown is an output of the above steps from my AdventureWorks Database.

I have had the opportunity to work on databases that have several 1000s of tables and it is sometimes di�cult to get to the object
from the Object Explorer and Object Explorer Details because we need to scroll through tons of data. Lesser known is the trick
that we can type the object name and both Object Explorer and Object Explorer Details can take us to that point directly.

In this example, we can either type from the Tables node under Object Explorer or we can select the Object Explorer Details
pane and type the object name. The end result for both is the same: we will automatically get scrolled to the point where the
object is. The only di�erence being, in Object Explorer we need to also type the Schema name followed by the object, while
in the Details pane we can directly type the Object name. Neat, isn’t it?

SEARCHING OBJECTS FROM THE WHOLE DB
Let us take a scenario where we
need to search for a keyword and
search across our database for
objects having this keyword. Now,
we need to search across object
types like Tables, Stored
Procedures, Triggers, Synonyms,
etc. This can be achieved using
the Object Explorer Details pane.
There is a search bar right on the
top and type in the keywords to
find them.

In this example, we have
searched for the keyword “Contact”
and we are using “%” as a wildcard
character. This tells SQL Server
Management Studio to display all
the objects that have the word
“Contact” in their name.

6

A lot of times when we start our work using Object Explorer Details, we can be working inside a shell that is not in sync with
the Object Explorer pane. Sometimes we would love to get to that node on our Object Explorer pane, and this can be easily
achieved using the Sync button on top of the Object Explorer Details pane.

SYNC WITH OBJECT EXPLORER DETAILS

As we can see from the Type column, we have a mix
of Indexes, Table, userDefinedFunctions, Views and
XML Schema Collection as part of the search we just
performed. The top bar shows interesting information
– it says “Search for ‘%Contact%’ in database
‘AdventureWorks2012’ has been completed.”

If you want, we can expand on this search capability
and do the same search at an instance level. If we
select the Server name under Object Explorer and
perform a search here with a wildcard, this search will
happen across databases, across all objects. As you
can see, the message is slightly di�erent when
compared to what we saw previously.

CONCLUSION

7

If you work with enterprise level software, the chances of you dealing with 100s of tables if not 1000s is quite possible. I have
seen developers and DBAs struggle with scrolling through tons of data. Earlier in this whitepaper we showed you ways to
search, and type to get to the location. There is yet another method to work with the data, which is using Filters.

There are a couple of ways we can do this.

 1. Use the Object Explorer to get to the given node and in the above example we are at the Tables node and we have
 used the Filter icon available in Object Explorer.

 2. We can get the same e�ect of filter and the dialog from our Object Explorer Details pane. Similar to the earlier point,
 drill down to the node under question and then click on the Filter icon from the toolbar.

Adding a filter for an object like ‘Person’, ‘Sales’ or anything else will filter both on the Object Explorer pane and Object
Explorer Details pane at the same time.

I highly recommend using this technique because we do not have to scroll through tons of data before narrowing down to our
desired content.

Personal productivity is one of the key things a developer or a DBA loves to know about. In this whitepaper, I have covered
some of the simplest of tricks using Object Explorer and Object Explorer Details that you can start using in your environment.
These are simple yet powerful shortcuts that each one of us can use e�ectively and immediately for our work.

KNOW YOUR FILTERS

LOCKING TYPE BASICS

8

INTRODUCTION

SECTION TWO
BLOCKING AND LOCKING TROUBLESHOOTING

How many times in your life have you had to stand in a long queue to get work done? Be it the railway station, waiting for a bus
or anything else? Why do we all do this? There is a process and we need to follow the rules to get things done. If you look at it
closely, there is a method to the madness and to avoid any chaos we need to follow these rules. If I had to compare this to SQL
Server world there are tons of similarities. To maintain orderliness one has to stand in a queue, the longer the person in front
takes to complete their task, the longer we will be waiting in the queue. If this were a railway station ticketing counter, then if the
person takes a long time at the counter, the ticket master is unavailable to issue tickets for others. So where is the similarity?
Well, waiting in a queue while the previous person finishes their task is a typical blocking behavior and the state where the
ticket master is not able to issue tickets to others is a classic locking of resource problem. This whitepaper is all about blocking
and locking inside SQL Server.

Let me take a moment to talk only about the most commonly used locking types in this section. Though this is a complex and
heavy topic, it is helpful to get a primer in this section. There are a number of lock types, but the most common ones are:

Shared: This is used to allow concurrent transactions to read source data. The shared (S) lock type is released as soon as
the data has been read, unless the Isolation level is repeatable read or higher.

Exclusive: This lock is used to make sure no other transactions can read or modify data locked with an exclusive (X) lock.

Intent: This lock type indicates that SQL Server wants to acquire a shared (S) lock or exclusive (X) lock on some of the resourc-
es lower down in the transaction process.

ACID INTRO
Let me take you through the same from the basics. Blocking and locking is inevitable in traditional relational databases.
Like in our example above, it is a process and to ensure ACID properties of transactions, one needs to have them.

 Atomicity: Data modifications in a transaction is all-in or none behaviour.

 Consistency: Once a transaction is committed, data must be in a consistent state, i.e. data integrity needs to be met.

 Isolation: This is isolating and protecting concurrent transactions in modifying data that have been changed by
 another concurrent transaction.

 Durability: As the name suggests, once a transaction completes, the modifications are permanent and persist even
 in event of system failures.

Now that we are aware of the basics, SQL Server uses locks on data to prevent data corruption and stop multiple users from
updating the same record at the same time.

9

BLOCKING BEHAVIOURS

Update: The update (U) lock is used to prevent deadlock as exclusive from being used until a modification is made. A typical
update would acquire a shared (S) lock on the resources and then modifying would require the locks to be converted to
exclusive (X) locks. If two transactions try to perform an update data while one data tries to convert into exclusive lock, this
transaction needs to wait as the shared lock from other transaction and this conversion to exclusive lock are not compatible.
If the second transaction also tries to convert into an exclusive lock, then this transaction is waiting for connection one to
release its lock. This is a typical scenario of cyclic deadlock which we will explain in detail later. To avoid this scenario, update
locks are used by SQL Server because only one transaction can hold an Update lock on the same resource at a point in time.

In the below table, I have outlined a few more locking types for reference.

Locks on a resource can be taken for a short or a long duration. Short locks are released before the transaction completes.
These are like Shared lock in Read Committed Isolation wherein the lock is released as soon as the transaction completes.
Long locks are those where the locks are released only when the transaction completes. Typically these are like exclusive locks
taken for insert, update or delete of rows. It is these uncommitted transactions that hold onto locks and cause possible blocking
behavior for other connections.

Note: Locks can also be held during sorting or hashing of rows as the query is waiting for memory resources.

Yet another reason can be because of IO intensive queries. I wrote a complete series on wait stats and will refrain from
expanding on them here again.

One salient point to note is that locks are managed on a per connection basis.

If we are talking about locking so much, what is blocking then? Let us briefly discuss this topic.

Blocking is a scenario where two connections are fighting over an incompatibility lock on a resource, i.e., table, row, page,
ranges of keys, indexes or database. This is a first-come first-serve basis scenario. The first connection that makes a request
for a lock is granted access to the resource while all the subsequent requests are now blocked and cannot continue processing
until the first connection’s lock is released. By default, there is no mandatory time-out period and no way to test if a resource is
locked before locking it, except to attempt to access the data (and potentially get blocked indefinitely). Blocking, as you can
see, is inevitable and is needed for data integrity (from ACID it is consistency and isolation). It is surely an extension to the
locking basics we discussed before in this whitepaper.

Lock Description

Schema-Stability (Sch-S) Acquired when compiling queries

Schema Modification (Sch-M) Acquired for DDL operations like ALTER or DROP on a table schema

Shared (S) Acquired for reading data

Update (U) Acquired before modification can get converted to exclusive

Exclusive (X) Acquired for writing

Intent Shared (IS) Requests for shared lock(s)

Intent Update (IU) Requests for update lock(s)

Intent Exclusive (IX) Requests for exclusive lock(s)

Bulk Update (BU) Used when we do bulk copy operations into a table

-- Calculate the blocking rates and wait times
SELECT SUM(row_lock_count) row_locks,
SUM(row_lock_wait_count) row_lock_waits,
SUM(row_lock_wait_in_ms) row_lock_wait_time_ms,
SUM(page_lock_count) page_locks,
SUM(page_lock_wait_count) page_lock_waits,
SUM(page_lock_wait_in_ms) page_lock_wait_time_ms
FROM sys.dm_db_index_operational_stats(DB_ID(),null,null,null)

10

UNDERSTANDING BLOCKING AND WAITS
Since we are talking about waits at the row / page level, this information can be gotten from the Dynamic Management View
(DMV) - SYS.DM_DB_INDEX_OPERATIONAL_STATS using the following query. The query finds the blocking and the wait times
for the given database.

SELECT DB_NAME() as DB_NAME, obj.name as table_name,
ind.name as index_name, ind.type_desc,
leaf_allocation_count+nonleaf_allocation_count as splits,
range_scan_count, singleton_lookup_count,
leaf_insert_count+nonleaf_insert_count as inserts,
leaf_update_count+nonleaf_update_count as updates,
leaf_delete_count+nonleaf_delete_count as deletes
FROM sys.dm_db_index_operational_stats(DB_ID(),null,null,null) as os
INNER JOIN sys.indexes as ind
ON ind.object_id = os.object_id and ind.index_id = os.index_id
INNER JOIN sys.objects as obj
ON obj.object_id = os.object_id
WHERE obj.Type NOT LIKE 'S'

These DMVs are so powerful that we can get tons of other information to how the access pattern has been on these resources.
For example, we can be interested in understanding the number of inserts, updates and deletes happening on the database.
This can be also queried from the same DMV using a query as shown below:

Let us query SYS.DM_EXEC_QUERY_STATS and SYS.DM_EXEC_SQL_TEXT to identify the top 20 blocked queries and their
wait times using the below query.

11

SELECT TOP(20) sql_text.text AS "Batch text",
CASE qs.statement_end_offset
 WHEN -1
 THEN SUBSTRING(sql_text.text, qs.statement_start_offset/2,64000)
 ELSE SUBSTRING(sql_text.text, qs.statement_start_offset/2,
 (qs.statement_end_offset-qs.statement_start_offset)/2)
 END AS "Statement text",
execution_count, total_elapsed_time, total_worker_time,
(total_elapsed_time - total_worker_time) AS total_wait_time
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS sql_text
ORDER BY (total_elapsed_time - total_worker_time) DESC

A typical output looks like this:

KNOWING YOUR DEADLOCKS
Before we can get into a typical blocking behavior and troubleshooting, let us take a moment to recognize a unique behavior
called as deadlocks. A typical deadlock is a case when two connections are waiting to release resources locked by the other
connection. A common form of deadlock is called a cyclic deadlock. To outline how a typical cyclic deadlock happens, check
the sequence of activity happening in two connections.

Time Connection 1 Connection 2
T1 Begin Tran Begin Tran
T2 Granted Update Persons
 Set DOJ = “10/01/2014’
 Where name like ‘Pinal’
T3 Granted Update Address
 Set active = ‘N’
 Where person_name like ‘Pinal’
T4 Request Select*
 From Address
 Where person_name like ‘Pinal’
T5 Request Select*
 From Persons
 Where name like ‘Pinal’
T6 Deadlock Victim (blocking removed)
T7 Commit

ACTIVITY MONITOR

Msg 1205, Level 13, State 56, Line 10
Transaction (Process ID 53) was deadlocked on lock resources
with another process and has been chosen as the deadlock victim.
Rerun the transaction.

12

TOOLS TO IDENTIFY BLOCKING
There are a number of tools available with SQL Server that are out-of-the-box which we can use to identify blocking behavior.
There is no one tool that will fit the bill for all blocking issues. We need to use the right tool for the right situation.

One of the hidden gems inside SQL Server Management Studio is the Activity Monitor pane. The shortcut to invoke this
window is “CTRL + ALT + A”. From a blocking point of view, this can show us which are the processes blocked and who is
blocking with the resource associated. In the below screenshot, I have shown a simple blocking behaviour.

In the example, we can see that two connections are trying to take a lock on “Persons” and “Addresses” tables within the same
connection timespan. The sequence is made in such a way that now each of the connections is waiting for release of locks from
other connection. We are sure, if you ever encountered this deadlock situation – then a typical error message is shown:

Though deadlocks happen, not many know that a deadlock need not happen only because of cyclic behavior as explained
above. It can also occur in a single resource too. Let me show this in a simple timeline.

Time Connection 1 Connection 2
T1 Begin Tran Begin Tran
T2 Granted Select*
 From Persons With (HOLDLOCK)
 Where name like ‘Pinal’
T3 Granted Select*
 From Persons With (HOLDLOCK)
 Where name like ‘Pinal’
T4 Blocked Update Persons
 Set active = ‘N’
 Where name like ‘Pinal’
T5 Blocked Update Persons
 Set active = ‘Y’
 Where name like ‘Pinal’
T6 Deadlock Victim (blocking removed)
T7 Commit

DMVs

USE MASTER
GO
SELECT session_id, wait_type, blocking_session_id
FROM sys.dm_os_waiting_tasks
WHERE blocking_session_id <> 0
GO

SELECT
 [Session ID] = s.session_id,
 [Login] = s.login_name,
 [Database] = case when p.dbid=0 then N''
 else ISNULL(db_name(p.dbid),N'') end,
 [Task State] = ISNULL(t.task_state, N''),
 [Command] = ISNULL(r.command, N''),
 [Wait Time (ms)] = ISNULL(w.wait_duration_ms, 0),
 [Wait Type] = ISNULL(w.wait_type, N''),
 [Blocked By] = ISNULL(CONVERT (varchar, w.blocking_session_id), ''),
 [Login Time] = s.login_time

13

The way to read this is simple. Look for the value of 1 in the “Head Blocker” field; in our example it is SPID of 53. Next look for
values in “Blocked By”; in our example above, the Blocked By column has 53, which means the SPID of 54 is being blocked by
SPID of 53. Hence on current live systems it is worth to note that this is the fastest and quickest way to find blocking queries on a
live system to start troubleshooting. This is very basic information to start, but more often we want a lot more information about
the blocking behavior which can be gotten by tons of DMVs available inside SQL Server. Next we will look at some of them.

The Dynamic Management Views (DMVs) can be defined as a set of predefined views given out-of-the-box by SQL Server to
understand, monitor and troubleshoot activities happening inside SQL Server. With each release of SQL Server, the number of
DMVs keeps increasing because we have additional features to monitor. Getting back to blocking, we can easily get information.

A more complex query with tons of additional fields can be gotten from multiple DMVs. This is something I shared over my blog
and thought is worth a note here for quick reference.

14

PROFILER
Profiler has been with SQL Server for close to 1.5 decades and most users (DBAs and Developers alike) rely on this tool
heavily. As a DBA, this can be an awesome tool to troubleshoot activities happening inside SQL Server.

Profiler can also be powerful in troubleshooting blocking, deadlock, waiting and more. One of the lesser known facts is the
way in which we use trace templates. One of the default templates that come with profiler is called as TSQL_Locks. As the
name suggests, it gives us vital information about locks that have happened inside our SQL Server instance.

The same output is now shown with more details from multiple DMVs. This can give you a rough idea as to how powerful the
DMVs are inside SQL Server.

FROM sys.dm_exec_sessions s LEFT OUTER JOIN sys.dm_exec_connections c
 ON (s.session_id = c.session_id)
LEFT OUTER JOIN sys.dm_exec_requests r ON (s.session_id = r.session_id)
LEFT OUTER JOIN sys.dm_os_tasks t ON (r.session_id = t.session_id
 AND r.request_id = t.request_id)
LEFT OUTER JOIN sys.dm_os_waiting_tasks w
ON (t.task_address = w.waiting_task_address)
LEFT OUTER JOIN sys.dm_exec_requests r2
 ON (s.session_id = r2.blocking_session_id)
LEFT OUTER JOIN sys.sysprocesses p ON (s.session_id = p.spid)
WHERE s.is_user_process = 1
AND (r2.session_id IS NOT NULL
OR w.blocking_session_id IS NOT NULL)
ORDER BY s.session_id;

15

Since profiler collects specific events, the TSQL_Locks template collects the following events.

 • Blocked Process Report • Lock: Cancel
 • SP: StmtCompleted • Lock: Deadlock
 • SP: StmtStarting • Lock: Deadlock Chain
 • SQL: StmtCompleted • Lock: Escalation
 • SQL: StmtStarting • Lock: Timeout (timeout>0)
 • Deadlock Graph

If you haven’t used this before with your SQL Server environments, then I highly recommend giving it a try as part of your
troubleshooting. Having said that, from SQL Server 2014, the profiler tool has been deprecated as we seem to move slowly
but surely towards XEvents. We will discuss them later in this paper.

PROFILER – DEADLOCK GRAPHS
There are a number of events mentioned above worth a look; let me take one of the most interesting events called “Deadlock
Graph”. As the name suggests, it is a visual representation of how deadlock has occurred and what are the connections involved.

EXTENDED EVENTS
Extended Events (also called XEvents) were available from SQL Server
2005 edition, but it took prominence from SQL Server 2008 R2 release.
It has evolved from a mere TSQL syntax to the latest release of SQL Server
2014, and we now have a decent UI to work with. This feature was
introduced for lightweight logging and profiling – something similar to
profiler but with much more capabilities. This is the main reason for Profiler
now being deprecated because this is the future of troubleshooting and
logging inside SQL Server.

In this release of SQL Server, we can find a new node called Extended
Events and we can start a new session wizard by right clicking the
Sessions node.

The wizard is quite self-explanatory, there are tons of events to choose
from and in the below example we have gone ahead and searched on
“Lock” related events. As you can see, we have almost similar events as
defined in Profiler. On closer look, actually there are a lot more than what
Profiler can give.

We just simulated a single resource deadlock and we can see how the deadlock graph looks like.

As we said, deadlocks are a special case scenario of locking. It is important to mention that from SQL Server 2005 we also had
another capability called “Blocked Process Report”. This is also available in the above template.

A Blocked Process Report is invoked once we configure the same. The idea here is to have a master switch which will trigger an
event once a connection is waiting for a resource for more than the threshold time interval specified in the configuration.

16

We have gone ahead and selected few events and clicked our way to close. At the finalize screen we have the option to script
out the command that runs behind the scenes. The TSQL that gets generated for a sample XEvent I created is:

Once the session event is started, it starts to collect data. If you are on SQL Server Management Studio then we can also do a
“Live Preview” of the collection made. In my example, I have gone ahead and simulated a deadlock similar to the above. And if
we watch our events collection for the session, we can get the XML_DEADLOCK_REPORT, which is similar to the graphical
report we got from Profiler in XML format.

CREATE EVENT SESSION [Locks] ON SERVER
ADD EVENT
 sqlserver.database_xml_deadlock_report(ACTION(sqlserver.client_pid,
 sqlserver.database_name,sqlserver.sql_text)),
ADD EVENT
 sqlserver.lock_deadlock(ACTION(sqlserver.client_pid,
 sqlserver.database_name,sqlserver.sql_text)),
ADD EVENT
 sqlserver.lock_deadlock_chain(ACTION(sqlserver.client_pid,
 sqlserver.database_name,sqlserver.sql_text)),
ADD EVENT
 sqlserver.xml_deadlock_report(ACTION(sqlserver.client_pid,
 sqlserver.database_name,sqlserver.sql_text))
WITH (STARTUP_STATE=ON)
GO

CONCLUSION
Blocking and locking inside SQL Server is part of the system. It is inevitable, because to maintain integrity of data and show
consistent data to users accessing the system, locking is important. As a special case scenario, keep an eye on Deadlocks,
and the best way to mitigate them will be proper coding practices. This paper talked about how to troubleshoot and identify
blocking behaviour. We have not explained in detail how to mitigate the situation yet, but these quick troubleshooting
techniques will surely make you e�cient in looking at locks and blocking situations.

17

As you can see, the results and reports contain interesting information which we will never be able to collect using Profiler.
Hence it makes sense, this is the future. I highly urge you to get accustomed with XEvents.

-- Simple loop for Debugger Basics
DECLARE @loop INT = 0
WHILE (@loop < 10000)
BEGIN
 IF (@loop%200 = 0)
 -- Used to track our values
 PRINT @loop

 SET @loop += 20
END

INTRODUCTION

SHOW ME THE CODE!!!

SECTION THREE
DEMYSTIFYING DEBUGGING TECHNIQUES
WITH SQL SERVER

18

The greatest happiness for a father is to see our children grow in front of our very own eyes. My daughter has been my source
of inspiration for a number of things that I face in life. It is like living your childhood all over again with a twist. I have nothing to
complain about but everything to cherish. Recently, I had a unique opportunity to go to my daughter’s school for the
parent-teachers meeting.

In my last visit to the school, I had an opportunity to observe almost every parent around and how they were handling their
kids. There was something I noticed consistently that is worth a mention. The kids surely have a lot of energy and are filled with
questions. There wasn’t a minute where I would hear a kid ask – “Why, papa?”, or “Why is it like this?” This was the consistent
questioning to understand more about things happening around them, and they are explorers. The more I watched the whole
exercise, the more I started enjoying the day with my daughter. It taught me interesting things that I think are worth sharing. If
you ask me in software terms, the kid is debugging each and every result in front of them as they understand the reason.

Just the need to question why things are di�erent and why they are behaving the way they are is a typical instinct of a
Developer writing code. Many times I write some pseudo code and when I translate it into actual code, I get ba�ed with why
the result is so di�erent while my logic says something else. This leads me to debug the whole exercise.

As a SQL Server developer, the fundamental fun of debugging started in my early days using the PRINT command inside SQL
Server. I personally get a chance to see these debugging practices still alive in lot of production code. In this whitepaper, let me
take a chance to introduce you to the debugger techniques introduced with SQL Server 2012. If you are a Visual Studio C# or a
.NET developer, these techniques are so similar that you will never forget them. Yes, it is important to know and note that the
SQL Server Management Studio IDE is based on the Visual Studio shell. Hence the goodness of VS carries forward with
Management Studio too.

The idea of this paper is not to write lengthy code blocks and show you how a debugger might potentially work. We will use
a simple looping block as shown below to check how a debugger will work.

The code is simple as it initializes a variable. We have a WHILE block which loops while incrementing the variable by 20.
In every 200 values achieved, we are printing the same as part of the code. The code is proposed to run till 10000.

19

There is absolutely no rocket science to this code. Let us assume this can be code that runs in your production environment
where we need to debug how the variable value increases in each of the passes.

DEBUGGER – GETTING STARTED
There are a number of ways we can start the whole debugging process. Below shown is our debugger option from the toolbar.
Select the Debug tab, hover over Windows and select Breakpoints.

The other way to start the debugger at a specific location is to use the left side ribbon – a “Grey Band” in our SQL Server
Management Studio script window. For simplicity reasons, I have shown this in the figure below. So as you can see, enabling
the debugger is really easy now.

WATCHING FOR VALUES

20

We know the values can be easily found using the PRINT statement inside our code block. But once the debugger is started,
enable the Locals window. This is the window that allows us to look at all the local variables in the current batch. For our
example, the local variable in the batch is @Loop.

The same value as per the flow of code gets printed in the message window too as shown in the diagram above.

Once the debugger has been enabled and we need to go through the code, we need to know what the other options available
for debugging are. The toolbar shows us the list of options we can start using with the debugger. Some of them include Break
All, Stop Debugging, Next Statement, Step Into, Step Over and so on.

BREAKPOINT CONDITION
As soon as we select this option, we will get a dialog like the one shown below. Here we can add an additional condition which
when satisfied the debugger will prompt. In our example we have put an additional condition that the debugger needs to stop
when we hit multiples of 80.

BREAKPOINT HIT COUNT
This option lets us configure what needs to be done when the breakpoint is hit or when the codeflow reaches the breakpoint
location. We have a number of options from “break always”, “when the hit count is equal to something”, “when count is a multiple
of something” and so on. Use these if you want to skip to specific code flow when the variable hits one of these conditions.

ADVANCED DEBUGGING OPTIONS
Watching for the locals is just one part of the story. As developers
there are advanced options that we can start using with SQL Server
Management Studio too. If we get an opportunity to right click the
Debug point, we will be presented with a list of options that I would
like to explain:

 • Condition
 • Hit Counter
 • Filter
 • When Hit

All of these options are handy and can be of great help to
developers who are debugging their code. In the next section, we
will talk about them quickly to understand how they can be used.

21

BREAKPOINT FILTER

22

In this option for breakpoint, we are adding additional filters to the code block. Assume a case when the code is being run in a
multi-user scenario. Here we would like to restrict the condition so that the code needs to be debugged only when the machine
name is from Pinal. These additional filter blocks can be configured in this “Filter” block. In the below diagram we have added a
filter to debug only when the machine is “PC-Pinal”.

WHEN A BREAKPOINT IS HIT
This is like our very own conventional block of PRINT statement that we can also write in the options. It shows what can be done
as we hit the breakpoint and how we can visualize the values di�erently. There are additional functions that can be added as
part of our print which can vary from Process ID, Thread ID executing and so on. In our figure below, we have added the value
of @Loop to be printed whenever we reach the breakpoint.

A typical output of the breakpoint is hit is shown below. We are printing all the values as we cross the Breakpoint location.

If we keep playing around with what is available with the Visual Studio projects, we can explore more options. As a developer of
SQL Server, these are wonderful additions to the existing PRINT statements.

23

Msg 28102, Level 16, State 1, Line 10
Batch execution is terminated because of debugger request.

24

USEFUL DEBUGGER SHORTCUTS
We have shown a number of shortcut keys at various points in this whitepaper. Here is a summary of the shortcut keys.

As we wrap up this concept, I would like to advise that the person needs to have SYSADMIN privileges to start debugging
inside SQL Server. This is one of the pre-requisites to play with debugging capability. If the end user aborts the debugging
session in the middle, then we will be presented with the below error message:

Action Shortcut

Toggle breakpoint F9

Enable breakpoint CTRL+F9

Stop debugging SHIFT+F5

Step into F11

Step over F10

Step out SHIFT+F11

Delete all breakpoints CTRL+SHIFT+F9

Display the Breakpoints window CTRL+ALT+B

Display the Locals window CTRL+ALT+V, L

Display the Immediate window CTRL+ALT+I

Display the Call Stack window CTRL+ALT+C

Display the Threads window CTRL+ALT+H

Start or continue debugging ALT+F5

Show next statement ALT+NUM

CONCLUSION
Debugging, though a tough option inside SQL Server, has surely come a long way with the integration with Visual Studio to
make SQL Server Management Studio much more powerful. These additions to SSMS have surely increased the productivity
of Developers and DBAs alike.

SELECT * FROM master.sys.server_principals;

SELECT * FROM master.sys.server_principals WHERE type = 'U'

25

INTRODUCTION

SECTION FOUR
NUTS AND BOLTS OF PERMISSIONS AND SECURITY

Being in the computer industry is one of the most challenging things anyone can get into. When upgrading one’s knowledge
to keep the data secure, there are a number of hurdles to cross. In this industry where we look for quick, fast responses from
development to deployment to sales, everyone is expected to deliver without compromising any of the business parameters.
As we chase around the tough deadlines for delivery, the team tries to take shortcuts. This, for most cases, involves cutting
corners and compromising on designing for secure systems. This is a concern for a number of organizations. DBAs love to build
a secure system to deploy applications delivered from the Application team. Having said that, in this whitepaper I would like to
get back to the basics of security. We want to cover some of the fundamental building blocks that were added with SQL Server
since the 2005 version that are worth noting.

PRINCIPALS
From SQL Server 2005 we refer to all login and database user accounts as “Principals”. This is consistent with the Windows
concept of a “security principal”. A security principal is an entity that can be identified and verified via authentication.
The concept hasn’t changed much from earlier versions of SQL Server; it is more of a terminology change.

The capabilities of principals depend on their scope of definition (server or database) and whether they represent a single
principal (Primary) or a collection of principals (Secondary). Each Principal is uniquely identified by a Security Identifier (SID).

DMVs are the heart of finding what type of login is currently being used. At a high-level, to learn about the Primary Principals,
we can use the following DMV query.

SERVER-LEVEL PRIMARY PRINCIPALS

Windows logins are defined in the local machine or the AD forest (called a domain login) of which the SQL server instance is a
part of. The management of these principals is not within the scope of SQL Server. Each Windows login is uniquely represented
with a SID, provided by Windows itself. These can be obtained using the following query:

Windows Login

SELECT * FROM master.sys.server_principals WHERE type = 'S'

SELECT * FROM master.sys.server_principals WHERE type = 'G'

26

As we discuss the fine print, these are two kinds of Server level secondary principals as described below.

SERVER-LEVEL SECONDARY PRINCIPALS

DATABASE-LEVEL PRIMARY PRINCIPALS

SQL logins are defined in a particular SQL Server instance. They are undefined outside the scope of that SQL Server. They are
used for authorization of resources within that server. However, they are visible across all databases in the server and can be
used for authorization of resources in any database in the server. As with Windows logins, each SQL login is uniquely
represented by a SID (which in this case is a GUID as it has no Windows-provided SID).

SQL Login

Windows groups are again defined in the local machine or the AD forest (called domain login) of which the SQL Server instance
is a part. The management of these principals is not within the scope of SQL Server. Based on the nature of the domain there
can be di�erent types of these. Each Windows group is uniquely represented by a SID. We can query them using:

Windows Groups

SELECT * FROM master.sys.server_principals WHERE type = 'R'

SQL roles are specifically more widely known as “fixed server roles”. They are defined in each SQL Server instance and
membership is undefined outside the scope of that SQL Server. They are used for authorization of resources within that
server. As with Windows logins, each SQL role is uniquely represented by a SID (which in this case is a GUID as it has no
Windows-provided SID).

SQL Role

Any server-level principal which requires access to a database needs to be mapped to a Database User in the relevant
database. A Database User is a principal at the database level. Every database user is a member of the public role. SQL Server
includes a guest database user account that has limited access rights. With the secure by default strategy, the latest versions
of SQL Server keep this account in a disabled status.

Database User

LOGINS AND USERS
As we have discussed, the concept of a “login” as an object has been replaced by the “principal” object. However, we still have
to be able to provide the ability for SQL Server to recognize a principal and authorize it for login access to SQL Server and its
databases. To do this we create a login in SQL Server for the relevant principal and we create a user in each required database
and map it to the principal.

When we create a login, we are adding an entry into the SYS.SERVER_PRINCIPALS view in master in much the same way as
used to occur with the sysxlogins system table in earlier versions of SQL. There is a new syntax, CREATE LOGIN to replace the
previous SP_ADDLOGIN procedure.

When we create a database user, we are adding an entry into the SYS.DATABASE_PRINCIPALS view in a specific database, in
much the same way as used to occur with the sysusers table in earlier versions of SQL Server. One of these views exists in
each database, as database users are scoped at database level. There is a new syntax, CREATE USER, to replace the previous
SP_ADDUSER procedure.

SELECT * FROM <dbname>.sys.database_principals WHERE type in ('S','U','C')

SELECT * FROM <dbname>.sys.database_principals WHERE type = 'A'

SELECT * FROM <dbname>.sys.database_principals WHERE type = 'R'

27

DATABASE-LEVEL SECONDARY PRINCIPALS

Database roles are an aggregation mechanism for collections of database users. Since they are defined within the database,
they cease to exist outside the database. Members of the DB_OWNER and DB_SECURITYADMIN fixed database roles can
manage fixed database role membership. Every database user is a member of the public database role. When a user hasn’t
been granted or denied permissions on a securable, it inherits the permissions granted to the public on that securable.

Database Role

Application roles are database scoped principals that are like users, but have no mapped login. They are restricted to a
database and are identified by a password.

We also have something called a CONTAINED DATABASE USER which is worth a mention here. We are keeping it out of scope
of this document because it is all by itself a larger topic to discuss.

Application Role

It is important to be aware of a number of new features though, such as the ability to map a SQL Login to a Certificate or
Asymmetric key. Additionally it is also possible to assign credentials to a SQL login, which is used for the mapping of a SQL
login to external credential such as a Windows login for authentication and authorization purposes when accessing external
resources. It is also now possible to ENABLE and DISABLE a login.

There are also a number of new options for SQL logins which are worth pointing out, CHECK_EXPIRATION and
CHECK_POLICY being two of those. These specify whether password expiration policy should be enforced on this login and
also whether the Windows password policies of the computer on which SQL Server is running should be enforced on this login.

In order to strengthen the security of SQL Login accounts, since SQL Server 2005 we have the ability to enforce strong
passwords, account lockout, password age mechanisms and/or enforcement of domain or local level password policy.

The Group Policy security settings can be examined by running GPEDIT.MSC, and expanding Computer Configuration 
Windows Settings  Security Settings  Account Policies  Password Policy. If I do this on my machine I see the following
settings (note your values may have di�erent settings):

 Enforce password history ..8 passwords remembered
 Maximum password age ..90 days
 Minimum password age ...1 days
 Minimum password length ..8 characters
 Password must meet complexity requirements ..Enabled
 Store password using reversible encryption for all users in the domainEnabled

Local security policy for a non-domain computer can be examined using the Local Security Settings tool under Administrative Tools.

It is these settings that Password Policy is enforcing for SQL logins. Of course Windows logins already have this enforced by the
system, so in e�ect we are only bringing SQL in line with established best practice. Note that Password Policy does not apply to
Application Roles in this release. CHECK_POLICY is enabled by default, although CHECK_EXPIRATION is not.

 CHECK_EXPIRATION enforces minimum and maximum password age.
 CHECK_POLICY enforces all other policies.

When you run afoul of any of the policy settings, your account is locked. It must be unlocked by a Sysadmin, using the
UNLOCK option of ALTER LOGIN.

DECLARE @max_age int
SET @max_age = 90

SELECT name,
 is_policy_checked,
 is_expiration_checked,

28

PASSWORD POLICY TROUBLESHOOTING

PASSWORD POLICY

Most of the error messages that cause login failures due to Password Policy enforcement are fairly clear, however there may be
circumstances under which the error is not correctly propagated to the user, due to legacy applications, poor error handling,
etc. In these cases the EventLog and Errorlog should contain the relevant message.

SQL logins may expire after the Maximum Password age. In order to address this and identify accounts which are a�ected by
the policy, a Sysadmin can run the following script to provide the current state of SQL logins:

 LOGINPROPERTY(name, 'IsExpired') AS is_expired,
 LOGINPROPERTY(name, 'IsLocked') AS is_locked,
 LOGINPROPERTY(name, 'IsMustChange') AS is_mustchange,
 LOGINPROPERTY(name, 'HistoryLength') AS history_length,
 LOGINPROPERTY(name, 'BadPasswordCount') AS bad_password_count,
 DATEDIFF(day, GETDATE(), DATEADD(day, @max_age,
 CAST(LOGINPROPERTY(name, 'PasswordLastSetTime')
 AS datetime))) AS days_until_expiration,
 LOGINPROPERTY(name, 'PasswordLastSetTime') AS
 password_last_set_time,
 LOGINPROPERTY(name, 'BadPasswordTime') AS bad_password_time,
 LOGINPROPERTY(name, 'LockoutTime') AS lockout_time
FROM sys.sql_logins

ALTER LOGIN Pinal WITH PASSWORD = 'password' UNLOCK
GO

ALTER LOGIN sa ENABLE;
ALTER LOGIN sa WITH PASSWORD = 'myC0mplexPa$$w0rd'

29

SPECIAL USER SYSADMIN

Note that we are required to set the MAX_AGE variable manually. This should be set to the value for maximum password age as
per the Global Policy/Local Policy currently in force on the SQL Server machine, which can be obtained via GPEDIT.MSC or
Local Security settings.

In order to unlock an account, a Sysadmin should run the following statement to unlock the a�ected user account:

If SQL is installed in Windows Authentication mode we assign a random password to the SA account and disable it by default.
This is to prevent the situation where we have a system with an active SA account with a blank password. If the authentication
mode is changed, the SA account needs to be re-enabled and a password must be assigned to it.

30

CONCLUSION
Security is a core area and non-negotiable when it comes to mission critical applications. As DBAs, knowing the fine print of
working with security is very important. In this whitepaper, we got a chance to explore and learn some of these basics so that
our foundation is strong. I highly recommend we keep our eyes open on our deployment server to confirm our environments
are configured correctly. Look for possible security loopholes and try to plug them before they become a compliance issue.

In order to do this you must be a member of the SYSADMIN role. If you have dropped the BUILTIN\Administrators group
from the SYSADMIN role and have no other Sysadmins other than SA then there is a clear problem. In order to overcome
this, it should be possible to connect via DAC as a member of the server group BUILTIN\Administrators (using Windows
Authentication) and add a SYSADMIN account or to re-enable the SA account and reset its password. Any other action that
this Admin attempts inside SQL Server will work only if that Admin account has been granted access to perform that action.

31

Keep the setting of “Both failed and successful logins” for login auditing. It is critical we track or at least keep an eye on who is
accessing the system or attempting to access the system. By default, these settings are not to be tampered with. But I have
seen sometimes inexperienced DBAs do turn this setting o�. The default is to Audit the “Failed logins only”, but in mission
critical systems it might be a better practice to audit both failed and successful logins.

INTRODUCTION

AUDIT LOGINS

SECTION FIVE
SQL SERVER SECURITY PRACTICES

There are a number of examples where data theft has brought businesses to a halt or resulted in bad press that will leave a
tarnished image. For example, in 2013 Target announced about 40 million credit and debit card details were stolen. In a similar
timeframe, Adobe claimed that the corporate database of 130 million user records was stolen. There are many more horror
stories from banks, financial institutions, and retail organizations in the past and they get even scarier as we move into this
digital only world. As organizations start looking at security as a first class citizen and work on it proactively, these incidents
will still keep happening and we will always be playing the catch-up game.

If you are in the job of consulting or if you are in sales oriented jobs, the likelihood of engaging with new customers on a daily
basis is inevitable – and I am one of them. This is something I do a lot in my day job and sometimes I have to deal with some
really rude security procedures at the clients’ place of business. I always wonder why we get grilled, frisked and put under so
much scrutiny. In one of my recent trips while hopping via airports, the security guard stopped me and told me to write my
phone number and name on my baggage tag. I first thought about it and then out of curiosity asked him politely (in frustration),
“Why are you doing this and forcing me? I am a frequent traveler and have never been asked to do this in my 8+ years of travel
anywhere. This is just a domestic trip, and please relax, because I have a flight to catch.”

The guard smiled and politely said, “All the more reason, sir – you now need to write it every time you plan to travel.” Seeing me
getting a little impatient, he added, “Sir, since you are in a hurry and you are distributing your laptop, bag, cellphone, etc. in
di�erent bins, it is quite possible you might miss picking up your materials because of the rush. So if you had written down the
phone number, we can reach you individually rather than making a public announcement which can be of inconvenience to all
in this airport.” He added to say, “Sir, I am just doing my job.”

This incident changed the way I see security personnel. They are doing a job and we need to just respect them. A deep
introspection got me into thinking about security in a di�erent way. What about security in the software we develop? Why is
security not a consideration during the design phase itself? Securing our data is one of the most important aspects when it
comes to keeping your trade secrets from preying competition.

In this paper let me take some of the common security practices that I propose to my customers on a daily basis and how one
needs to start implementing security measures within their deployment of SQL Server. I am sure if you are a DBA, these are like
checklists you don’t want to miss when working with a database engine like SQL Server. We will cover details around the logins
and authentication area.

32

AUTHENTICATION AND DISABLE SA
Try to use Windows Authentication as much as possible. Usage of mixed mode authentication is recommended for legacy
applications and non-Windows users. I recommend this religiously because when multiple users use the same login, it becomes
di�cult to know which “NT User” actually did an operation on the server. I recommend this for SQL Server Administration too,
instead of using the default SYSADMIN SA account. Try not to share the SA account across multiple users. We can change
the authentication type on the Server Properties  Security  Server Authentication; this setting can be found as shown
in above figure.

If possible make sure to disable the SA login inside SQL Server. This is because the user account can be easily guessed by
anyone working with SQL Server. Ideally, rename or disable this account and use some other account to administer your
SQL Server instance. The following command can help you DISABLE / ENABLE the SA user account.

As we move to the next recommendation, if you have to use mixed mode authentication then I highly recommend enabling the
password expiration and password complexity values for all the logins created on the server for all the authentication types.

If there are multiple users administering a given SQL Server instance, then it is recommended to track password changes for
SQL Server logins. Enabling auditing on password changes for SQL Server logins allows you to investigate when and by whom
the passwords of specific logins have changed. Consider creating a server audit for the action 'LOGIN_CHANGE_PASS-
WORD_GROUP '.

The idea is to make sure there are no DOS attacks made on the system and we are tracking the connections coming into the
server. From SQL Server 2008, it is also possible to use the new Audit feature to log connection attempts. If you plan to use
this, as a practice use a secured location for audit data files.

/* Disable SA Login */
ALTER LOGIN [sa] DISABLE
GO
/* Enable SA Login */
ALTER LOGIN [sa] ENABLE
GO

/* REVOKE VIEW DEFINITION PERMISSION */
USE master
GO
REVOKE VIEW ANY DEFINITION TO Pinal

SELECT
prin2.name AS [Name],
prin2.is_disabled,
prin2.type_desc AS [Login Type],
prin2.create_date
FROM sys.server_principals prin
INNER JOIN sys.server_role_members mem
ON prin.principal_id = mem.role_principal_id
INNER JOIN sys.server_principals prin2
ON prin2.principal_id = mem.member_principal_id
WHERE prin.type = 'R' and prin.name = N'sysadmin'

33

VIEW DATABASE PERMISSION

SYSADMINS HAVE SUPER POWERS

This is a server level permission and lesser appreciated permission. If this permission is given then the login can see all the
metadata for all databases irrespective of the login owning the database or not. By controlling this permission we e�ectively
restrict the amount of data a login can see in the SYS.DATABASES, SYS.SYSDATABASES views and SP_HELPDB calls. To limit
visibility to database metadata, deny a login the VIEW ANY DATABASE permission.

After this permission is denied, a login can see only metadata for master, tempdb and databases that the login owns. By default the
public role is granted this permission, don’t use DENY on the “public” role otherwise no one will be able to list database objects.

From SQL Server 2008 onwards, the Windows built-in administrators group is not part of the SQL Server SYSADMIN fixed
server role. This is a great “secure by default” strategy and best practice in my opinion and I am glad this was done. Now during
the installation, we are requested to explicitly mention / grant the logins who will have SYSADMIN privileges. Be very cautious in
giving SYSADMIN privileges to logins. The below script lets you find out who are the Sysadmins in your server today.

Sysadmins as the name suggests have all the permissions to do anything inside SQL Server. If you have to give permission,
then provision the logins in the SYSADMIN fixed server role directly; don’t use a common SQL Authentication with the
SYSADMIN rights on the server – this helps while auditing. On my local server you can see I have hardly given rights to
anyone apart from my own Login.

It’s highly recommended to give SYSADMIN privileges to the lowest number of accounts to maximize security. And do not
assign any elevated rights to a user if that user does not need it.

USE [master]
GO
CREATE LOGIN SQLAuthority WITH PASSWORD=N'pass@word1',
DEFAULT_DATABASE=[master],
CHECK_EXPIRATION=ON, CHECK_POLICY=ON
GO

GRANT CONTROL SERVER TO SQLAuthority;
GO

34

HOW TO PROTECT FROM SYSADMINS?
As we can see, the Sysadmins are really powerful, and when using SYSADMIN privileges, note that no permission check is
done. So use this with caution and give access to only limited and, if possible, the least number of users.

Organizations have a need to protect their data and I have seen Management asking if there is a way to protect data even from
DBAs. The first question I ask is, “What rights have you given them?” The standard answer I get is, “They are DBAs and hence
we have given them the administrative rights of Sysadmins.” If you look at the examples and analogy I gave before, this is surely
dangerous, right? So the immediate question is, what should be the rights for a DBA?

These are tough questions but with every release of SQL Server there have been enhancements that we don’t want to miss.
Let me build the set of permissions for you leading to a feature introduced in SQL Server 2014.

Let us first start creating our super user SQLAuthority.

The idea now is NOT to give SYSADMIN rights but to give rights that still enable the DBA to do their day-to-day activities
without any problem. We are going to give this user CONTROL SERVER rights.

Let us query the permissions DMV to find out the e�ective permission SQLAuthority has after this GRANT. We will be using the
following command:

This gives us explicitly 34 specific server level permissions. This still isn’t that restrictive. If SQLAuthority tries to elevate himself
to SYSADMIN rights using the following command:

But from the list of permissions granted, we can find that IMPERSONATE ANY LOGIN is available for this user. If that is the case,
then SQLAuthority can impersonate ANY user in the system and gain access to the server. Typically, he would do it this way:

He will be presented with an error stating no permissions.

SELECT entity_name, permission_name
FROM sys.fn_my_permissions(NULL, NULL);

ALTER SERVER ROLE sysadmin
ADD MEMBER SQLAuthority

Msg 15151, Level 16, State 1, Line 11
Cannot alter the server role 'sysadmin',
because it does not exist or you do not have permission.

EXECUTE AS LOGIN = 'sa';

ALTER SERVER ROLE sysadmin
ADD MEMBER SQLAuthority

REVERT;

35

DENY IMPERSONATE ON LOGIN::sa TO [SQLAuthority]

DENY IMPERSONATE ANY LOGIN TO SQLAuthority
GO

SELECT entity_name, permission_name
FROM sys.fn_my_permissions(NULL, NULL)

use [master]
GO
GRANT CONNECT ANY DATABASE TO [SQLAuthority]
GO
GRANT SELECT ALL USER SECURABLES TO [SQLAuthority]
GO

That is it, now SQLAuthority has gained SYSADMIN rights into the system, and this seems to be a problem prior to SQL Server
2012. With SQL Server 2012, there was an interesting addition to DENY impersonation rights to a user, and even if they have
CONTROL SERVER rights, SQL Server will honour the DENY permission. In our example, we can explicitly deny Impersonation
to SQLAuthority:

This is great, and now SQLAuthority cannot impersonate the SA account. But do you see the problem here? We have not solved
the problem yet. We have explicitly denied impersonation to this account, but there can be other users inside the system who
have SYSADMIN rights and our CONTROL SERVER rights will give SQLAuthority the opportunity to impersonate as one of them.
It is humanly impossible to DENY such rights to each and every user with SYSADMIN rights for SQLAuthority.

SQL Server 2014 comes with a permission called IMPERSONATE ANY LOGIN rights. This is powerful for the scenario we
questioned. After giving the CONTROL SERVER rights, we can issue the following command in SQL Server 2014:

After this command the e�ective permission for SQLAuthority is the same as CONTROL SERVER but he has been explicitly
denied IMPERSONATION rights. This is so powerful because as the management wants, we can give close to SYSADMIN rights
to a user to perform his daily duties yet not give them the ability to elevate themselves easily.

If we run the command for e�ective permissions, we can see the list now has one fewer row at 33. The DMF for this is:

Also worth a mention, the other permissions added in SQL Server 2014 are CONNECT ANY DATABASE and
SELECT ALL USER SECURABLES.

Think of these rights when you want to give permission to an Auditor who visits your organization for compliance and wants
access to the Server while they can only select and not update anything. These rights are powerful for those scenarios.

36

Security is a core area and non-negotiable when it comes to mission critical applications. We know how companies have lost
business and lost respect in the press because of lack of security measures. With every release of SQL Server, there are tons
of additions that get added as part of the platform. It is important to start using them in our application deployment design so
that these loopholes can be avoided. In this paper we discussed some of the general best practices as they evolved with
SQL Server versions and we took a note of specific SYSADMIN privileges and how we can secure our server using some of
the permissions added in SQL Server 2014.

37

CONCLUSION

ABOUT THE AUTHOR:
Pinal Dave is a Developer Evangelist. He has authored 11 SQL Server database books, 15 Pluralsight courses and has written

over 3000 articles on the database technology on his blog at http://blog.sqlauthority.com. Along with 10+ years of hands on

experience he holds a Masters of Science degree and a number of certifications, including MCTS, MCDBA and MCAD (.NET).

His past work experiences include Technology Evangelist at Microsoft and Sr. Consultant at SolidQ.

IDERA understands that IT doesn’t run on the network –
it runs on the data and databases that power your business.
That’s why we design our products with the database as
the nucleus of your IT universe.

Our database lifecycle management solutions allow database
and IT professionals to design, monitor and manage data systems
with complete confidence, whether in the cloud or on-premises.

We o�er a diverse portfolio of free tools and educational resources
to help you do more with less while giving you the knowledge to
deliver even more than you did yesterday.

Whatever your need, IDERA has a solution.

IDERA.com

SQL Doctor

•	 Tune SQL Server for physical, virtual, and cloud environments

•	 View a summary of the health of the entire enterprise and a selected server

•	 Display prioritized list of performance optimization recommendations

•	 Generate executable SQL scripts to optimize performance

•	 Access analysis history and view trends

•	 View advice for SQL Server 2016 and 2017, Azure SQL Database, and Amazon RDS

Start for FREE

TUNE DATABASE PERFORMANCE, DISASTER RECOVERY,
AND SECURITY WITH EXPERT RECOMMENDATIONS

https://www.idera.com/productssolutions/sqlserver/sqldoctor?&utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=sqldoctor#getStartedForm

