
®
 SQL Server Whitepaper

BLOCKING
AND LOCKING
TROUBLESHOOTING
BY PINAL DAVE

INTRODUCTION

How many times in your life have you had to

stand in a long queue to get work done?

Be it the railway station, waiting for a bus or anything

else? Why do we all do this? There is a process and

we need to follow the rules to get things done. If you

look at it closely, there is a method to the madness

and to avoid any chaos we need to follow these rules.

If I had to compare this to SQL Server world there

are tons of similarities.

To maintain orderliness one has to stand in a queue;

the longer the person in front takes to complete their

task, the longer we will be waiting in the queue.

If this were a railway station ticketing counter, then

if the person takes a long time at the counter, the

ticket master is unavailable to issue tickets for others.

So where is the similarity? Well, waiting in a queue

while the previous person finishes their task is a typical

blocking behavior and the state where the ticket master

is not able to issue tickets to others is a classic locking

of resource problem. This whitepaper is all about

blocking and locking inside SQL Server.

ACID INTRO
Let me take you through these topics from the basics. Blocking and locking is inevitable in traditional relational databases. Like

in our example above, it is a process and to ensure ACID properties of transactions, one needs to have them.

Atomicity

Data modifications in a transaction is all-in or none behaviour.

Consistency

Once a transaction is committed, data must be in a consistent state,

i.e. data integrity needs to be met.

Isolation

This is isolating and protecting concurrent transactions in modifying

data that have been changed by another concurrent transaction.

Durability

As the name suggests, once a transaction completes, the modifications

are permanent and persist even in event of system failures.

Now that we are aware of the basics, SQL Server uses locks on data to prevent data corruption and stop multiple

users from updating the same record at the same time.

LOCKING TYPE BASICS
Let me take a moment to talk only about the most commonly used locking types in this section.

Though this is a complex and heavy topic, it is helpful to get a primer in this section.

There are a number of lock types, but the most common ones are:

Shared This is used to allow concurrent transactions to read source data. The shared (S) lock type is released

as soon as the data has been read, unless the Isolation level is repeatable read or higher.

Exclusive This lock is used to make sure no other transactions can read or modify data locked with an exclusive (X) lock.

Intent This lock type indicates that SQL Server wants to acquire a shared (S) lock or exclusive (X) lock on some

of the resources lower down in the transaction process.

Update The update (U) lock is used to prevent deadlock as exclusive from being used until a modification is made.

A typical update would acquire a shared (S) lock on the resources and then modifying would require the locks to

be converted to exclusive (X) locks. If two transactions try to perform an update data while one data tries to convert into

exclusive lock, this transaction needs to wait as the shared lock from other transaction and this conversion to exclusive

lock are not compatible. If the second transaction also tries to convert into an exclusive lock, then this transaction is waiting

for connection one to release its lock. This is a typical scenario of cyclic deadlock which we will explain in detail later.

To avoid this scenario, update locks are used by SQL Server because only one transaction can hold an Update lock on

the same resource at a point in time.

In the below table, I have outlined a few more locking types for reference.

Locks on a resource can be taken for a short or a long duration. Short locks are released before the transaction

completes. These are like shared lock in Read Committed Isolation wherein the lock is released as soon as the transaction

completes. Long locks are those where the locks are released only when the transaction completes. Typically these are

like exclusive locks taken for insert, update or delete of rows. It is these uncommitted transactions that hold onto locks and

cause possible blocking behavior for other connections.

Note: Locks can also be held during sorting or hashing of rows as the query is waiting for memory resources.

Yet another reason can be because of IO intensive queries. I wrote a complete series on wait stats and will refrain

from expanding on them here again. To understand the same, check PAGEIOLATCH_SH and ASYNC_NETWORK_IO

for more details. As you can see, locks can be held for multiple reasons.

One salient point to note is that locks are managed on a per connection basis.

If we are talking about locking so much, what is blocking then? Let us briefly discuss this topic.

Schema-Stability (Sch-S)

Schema Modification (Sch-M)

Shared (S)

Update (U)

Exclusive (X)

Intent Shared (IS)

Intent Update (IU)

Intent Exclusive (IX)

Bulk Update (BU)

Acquired when compiling queries

Acquired for DDL operations like ALTER or DROP on a table schema

Acquired for reading data

Acquired before modification can get converted to exclusive

Acquired for writing

Requests for shared lock(s)

Requests for update lock(s)

Requests for exclusive lock(s)

Used when we do bulk copy operations into a table

LOCK MODE DESCRIPTION

http://blog.sqlauthority.com/2011/02/09/sql-server-pageiolatch_dt-pageiolatch_ex-pageiolatch_kp-pageiolatch_sh-pageiolatch_up-wait-type-day-9-of-28/
http://blog.sqlauthority.com/2011/02/11/sql-server-async_io_completion-wait-type-day-11-of-28/

BLOCKING BEHAVIOURS
Blocking is a scenario where two connections are fighting over an incompatibility lock on a resource, i.e., table,

row, page, ranges of keys, indexes or database. This is a first-come first-serve basis scenario. The first connection that

makes a request for a lock is granted access to the resource while all the subsequent requests are now blocked

and cannot continue processing until the first connection’s lock is released. By default, there is no mandatory time-out

period and no way to test if a resource is locked before locking it, except to attempt to access the data (and potentially

get blocked indefinitely). Blocking, as you can see, is inevitable and is needed for data integrity (from ACID it is

consistency and isolation). It is surely an extension to the locking basics we discussed before in this whitepaper.

UNDERSTANDING BLOCKING & WAITS
Since we are talking about waits at the row / page level, this information can be gotten from the Dynamic Management

View (DMV) - sys.dm_db_index_operational_stats using the following query. The query finds the blocking and

the wait times for the given database.

-- Calculate the blocking rates and wait times
SELECT SUM(row_lock_count) row_locks,
SUM(row_lock_wait_count) row_lock_waits,
SUM(row_lock_wait_in_ms) row_lock_wait_time_ms,
SUM(page_lock_count) page_locks,
SUM(page_lock_wait_count) page_lock_waits,
SUM(page_lock_wait_in_ms) page_lock_wait_time_ms
FROM sys.dm_db_index_operational_stats(DB_ID(),null,null,null)

These DMVs are so powerful that we can get tons of other information to how the access pattern has been on these

resources. For example, we can be interested in understanding the number of inserts, updates and deletes happening on

the database. This can be also queried from the same DMV using a query as shown below:

SELECT DB_NAME() as DB_NAME, obj.name as table_name,
ind.name as index_name, ind.type_desc,
leaf_allocation_count+nonleaf_allocation_count as splits,
range_scan_count, singleton_lookup_count,
leaf_insert_count+nonleaf_insert_count as inserts,
leaf_update_count+nonleaf_update_count as updates,
leaf_delete_count+nonleaf_delete_count as deletes
FROM sys.dm_db_index_operational_stats(DB_ID(),null,null,null) as os
INNER JOIN sys.indexes as ind
ON ind.object_id = os.object_id and ind.index_id = os.index_id
INNER JOIN sys.objects as obj
ON obj.object_id = os.object_id
WHERE obj.Type NOT LIKE ‘S’

Let us query sys.dm_exec_query_stats and sys.dm_exec_sql_text to identify the top 20 blocked queries

and their wait times using the below query.

SELECT TOP(20) sql_text.text AS “Batch text”,
CASE qs.statement_end_offset
 WHEN -1
 THEN SUBSTRING(sql_text.text, qs.statement_start_offset/2,64000)
 ELSE SUBSTRING(sql_text.text, qs.statement_start_offset/2,
 (qs.statement_end_offset-qs.statement_start_offset)/2)
 END AS “Statement text”,
execution_count, total_elapsed_time, total_worker_time,
(total_elapsed_time - total_worker_time) AS total_wait_time
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS sql_text
ORDER BY (total_elapsed_time - total_worker_time) DESC

A typical output looks like this:

KNOWING YOUR DEADLOCKS
Before we can get into a typical blocking behavior and troubleshooting, let us take a moment to recognize a unique

behavior called deadlocks. A typical deadlock is a case when two connections are waiting to release resources locked

by the other connection. A common form of deadlock is called a cyclic deadlock. To outline how a typical cyclic deadlock

happens, check the sequence of activity happening in two connections.

T1

T2

Granted

T3

Granted

T4

Request

T5

Request

T6

T7

Begin Tran

Update Persons

Set DOJ = ‘10/01/2014’

Where name like ‘Pinal’

Select *

From Address

Where person_name like ‘Pinal’

Deadlock Victim

Begin Tran

Update Address

Set active = ‘N’

Where person_name like ‘Pinal’

Select *

From Persons

Where name like ‘Pinal’

(blocking removed)

Commit

TIME CONNECTION 1 CONNECTION 2

In the example, we can see that two connections are trying to take a lock on “Persons” and “Addresses” tables

within the same connection timespan. The sequence is made in such a way that now each of the connections is

waiting for release of locks from other connection. We are sure, if you ever encountered this deadlock situation –

then a typical error message is shown:

Msg 1205, Level 13, State 56, Line 10
Transaction (Process ID 53) was deadlocked on lock resources
with another process and has been chosen as the deadlock victim.
Rerun the transaction.

Though deadlocks happen, not many know that a deadlock need not happen only because of cyclic behavior as

explained above. It can also occur in a single resource too. Let me show this in a simple timeline.

T1

T2

Granted

T3

Granted

T4

Blocked

T5

Blocked

T6

T7

Begin Tran

Select *

From Persons With (HOLDLOCK)

Where name like ‘Pinal’

Update Persons

Set active = ‘N’

Where name like ‘Pinal’

Deadlock Victim

Begin Tran

Select *

From Persons With (HOLDLOCK)

Where name like ‘Pinal’

Update Persons

Set active = ‘Y’

Where name like ‘Pinal’

(blocking removed)

Commit

TIME CONNECTION 1 CONNECTION 2

TOOLS TO IDENTIFY BLOCKING
There are a number of tools available with SQL Server that are out-of-the-box which we can use to identify

blocking behavior. There is no one tool that will fit the bill for all blocking issues. We need to use the right tool

for the right situation.

ACTIVITY MONITOR
One of the hidden gems inside SQL Server Management Studio is the Activity Monitor pane. The shortcut to

invoke this window is “CTRL + ALT + A”. From a blocking point of view, this can show us which are the processes

blocked and who is blocking with the resource associated. In the below screenshot, I have shown a simple

blocking behaviour.

The way to read this is simple. Look for the value of 1 in the “Head Blocker” field; in our example it is SPID of 53.

Next look for values in “Blocked By”; in our example above, the “Blocked By” column has 53, which means the SPID

of 54 is being blocked by SPID of 53. Hence on current live systems it is worth to note that this is the fastest and

quickest way to find blocking queries on a live system to start troubleshooting. This is very basic information to start,

but more often we want a lot more information about the blocking behaviour which can be gotten by tons of DMVs

available inside SQL Server. Next we will look at some of them.

DMVS
The Dynamic Management Views (DMVs) can be defined as a set of predefined views given out-of-the-box by

SQL Server to understand, monitor and troubleshoot activities happening inside SQL Server. With each release of

SQL Server, the number of DMVs keeps increasing because we have additional features to monitor. Getting back

to blocking, we can easily get information.

USE MASTER
GO
SELECT session_id, wait_type, blocking_session_id
FROM sys.dm_os_waiting_tasks
WHERE blocking_session_id <> 0
GO

A more complex query with tons of additional fields can be gotten from multiple DMVs.

This is something I shared on my blog, and I thought it was worth a note here for quick reference.

SELECT
 [Session ID] = s.session_id,
 [Login] = s.login_name,
 [Database] = case when p.dbid=0 then N’’ else
ISNULL(db_name(p.dbid),N’’) end,
 [Task State] = ISNULL(t.task_state, N’’),
 [Command] = ISNULL(r.command, N’’),
 [Wait Time (ms)] = ISNULL(w.wait_duration_ms, 0),
 [Wait Type] = ISNULL(w.wait_type, N’’),
 [Blocked By] = ISNULL(CONVERT (varchar, w.blocking_session_id), ‘’),
 [Login Time] = s.login_time
FROM sys.dm_exec_sessions s LEFT OUTER JOIN sys.dm_exec_connections c ON
(s.session_id = c.session_id)
LEFT OUTER JOIN sys.dm_exec_requests r ON (s.session_id = r.session_id)
LEFT OUTER JOIN sys.dm_os_tasks t ON (r.session_id = t.session_id AND
r.request_id = t.request_id)
LEFT OUTER JOIN sys.dm_os_waiting_tasks w
ON (t.task_address = w.waiting_task_address)
LEFT OUTER JOIN sys.dm_exec_requests r2 ON (s.session_id =
r2.blocking_session_id)
LEFT OUTER JOIN sys.sysprocesses p ON (s.session_id = p.spid)
WHERE s.is_user_process = 1
AND (r2.session_id IS NOT NULL
OR w.blocking_session_id IS NOT NULL)
ORDER BY s.session_id;

The same output is now shown with more details from multiple DMVs. This can give you a rough idea

as to how powerful the DMVs are inside SQL Server.

PROFILER
Profiler has been with SQL Server for close to 1.5 decades and most users (DBAs and Developers alike) rely on

this tool heavily. As a DBA, this can be an awesome tool to troubleshoot activities happening inside SQL Server.

Profiler can also be powerful in troubleshooting blocking, deadlock, waiting and more. One of the lesser known

facts is the way in which we use trace templates. One of the default templates that come with Profiler is called as

TSQL_Locks. As the name suggests, it gives us vital information about locks that have happened inside our SQL

Server instance.

Since profiler collects specific events, the TSQL_Locks template collects the following events.

• Blocked Process Report

• SP: StmtCompleted

• SP: StmtStarting

• SQL: StmtCompleted

• SQL: StmtStarting

• Deadlock Graph

If you haven’t used this before with your SQL Server environments, then I highly recommend giving it a try as part

of your troubleshooting. Having said that, from SQL Server 2014, the profiler tool has been deprecated as we seem

to move slowly but surely towards XEvents. We will discuss them later in this paper.

PROFILER – DEADLOCK GRAPHS
There are a number of events mentioned above worth a look; let me take one of the most interesting events

called “Deadlock Graph”. As the name suggests, it is a visual representation of how a deadlock has occurred and

what are the connections involved.

We just simulated a single resource deadlock and we can see what the deadlock graph looks like.

As we said, deadlocks are a special case scenario of locking. It is important to mention that from SQL Server 2005

we also had another capability called “Blocked Process Report”. This is also available in the above template.

A Blocked Process Report is invoked once we configure the same. The idea here is to have a master switch which

will trigger an event once a connection is waiting for a resource for more than the threshold time interval specified in

the configuration. I wrote about this in detail over my blog, so make sure to read it there.

EXTENDED EVENTS
Extended Events (also called XEvents) were available from SQL Server

2005 edition, but it took prominence from SQL Server 2008 R2 release.

It has evolved from a mere TSQL syntax to the latest release of SQL

Server 2014, and we now have a decent UI to work with. This feature was

introduced for lightweight logging and profiling – something similar to

profiler but with much more capabilities. This is the main reason for Profiler

now being deprecated because this is the future of troubleshooting and

logging inside SQL Server.

• Lock: Cancel

• Lock: Deadlock

• Lock: Deadlock Chain

• Lock: Escalation

• Lock: Timeout (timeout>0)

http://blog.sqlauthority.com/2014/06/30/sql-server-find-blocking-using-blocked-process-threshold/

In this release of SQL Server, we can find a

new node called Extended Events and we can

start a new session wizard by right clicking

the “Sessions” node.

The wizard is quite self-explanatory, there are

tons of events to choose from and in the below

example we have gone ahead and searched on

“Lock” related events. As you can see, we have

almost similar events as defined in Profiler.

On closer look, actually there are a lot more

than what Profiler can give.

We have gone ahead and selected a few events and clicked our way to close. At the finalize screen we

have the option to script out the command that runs behind the scenes. The TSQL that gets generated for a

sample XEvent I created is:

CREATE EVENT SESSION [Locks] ON SERVER
ADD EVENT sqlserver.database_xml_deadlock_report(
ACTION(sqlserver.client_pid,sqlserver.database_name,sqlserver.sql_text)),
ADD EVENT sqlserver.lock_deadlock(
ACTION(sqlserver.client_pid,sqlserver.database_name,sqlserver.sql_text)),
ADD EVENT sqlserver.lock_deadlock_chain(
ACTION(sqlserver.client_pid,sqlserver.database_name,sqlserver.sql_text)),
ADD EVENT sqlserver.xml_deadlock_report(
ACTION(sqlserver.client_pid,sqlserver.database_name,sqlserver.sql_text))
WITH (STARTUP_STATE=ON)
GO

Once the session event is started, it starts

to collect data. If you are on SQL Server

Management Studio then we can also do a “Live

Preview” of the collection made. In my example,

I have gone ahead and simulated a deadlock

similar to the above. And if we watch our events

collection for the session, we can get the XML_

DeadLock_Report, which is similar to the graphical

report we got from Profiler in XML format.

As you can see, the results and reports contain

interesting information which we will never be

able to collect using Profiler. Hence it makes

sense, this is the future. I highly urge you to get

accustomed with XEvents.

Pinal Dave is a Developer Evangelist. He has authored 11 SQL Server database books, 14 Pluralsight courses and

over 2900 articles on the database technology on his blog at http://blog.sqlauthority.com. Along with 10+ years of hands

on experience he holds a Masters of Science degree and a number of certifications, including MCTS, MCDBA and MCAD

(.NET). His past work experiences include Technology Evangelist at Microsoft and Sr. Consultant at SolidQ.

CONCLUSION
Blocking and locking inside SQL Server is part of the system. It is inevitable, because to maintain integrity of data and show

consistent data to users accessing the system, locking is important. As a special case scenario, keep an eye on Deadlocks, and

the best way to mitigate them will be proper coding practices. This paper talked about how to troubleshoot and identify blocking

behaviour. We have not explained in detail how to mitigate the situation yet, but these quick troubleshooting techniques will surely

make you efficient in looking at locks and blocking situations.

IDERA understands that IT doesn’t run on the network –

it runs on the data and databases that power your business.

That’s why we design our products with the database as

the nucleus of your IT universe.

Our database lifecycle management solutions allow database and

IT professionals to design, monitor and manage data systems with

complete confidence, whether in the cloud or on-premises.

We offer a diverse portfolio of free tools and educational

resources to help you do more with less while giving you the

knowledge to deliver even more than you did yesterday.

Whatever your need, IDERA has a solution.

ABOUT THE AUTHOR

http://blog.sqlauthority.com

SQL DIAGNOSTIC MANAGER
SQL Server Performance Monitoring

• Monitor physical, virtual, and cloud environments.

• Track queries and plans to fix blocks and locks.

• Alert predictively and avoid false alerts.

• View expert advice with executable scripts.

IDERA.com

START FOR FREE

https://www.idera.com/productssolutions/sqlserver/sqldiagnosticmanager/freetrialsubscriptionform&utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=sqldiagnosticmanager
https://www.idera.com/productssolutions/sqlserver/sqldiagnosticmanager/freetrialsubscriptionform&utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=sqldiagnosticmanager
pdyke
Stamp

