
LEARN ABOUT INDEX FRAGMENTATION AND DEFRAGMENTATION

1

®
 Whitepaper

WHAT IS INDEX
FRAGMENTATION

2

INTRODUCTION
When changing data in a database, the database and its indexes become
fragmented. As indexes become fragmented, ordered data retrieval becomes

less efficient. Inefficient data retrieval reduces the performance of the database.

UNDERSTANDING THE DIFFERENT
TYPES OF FRAGMENTATION
There are several types of fragmentation that can occur. These types of
fragmentation impact the performance of the database and the usage of disk
space. Logical order and page density issues exist on tables and indexes within
databases. Tools for defragmentation at the level of the operating system
cannot resolve these issues. The reason is that the fragmentation exists within
the files, rather than at the file level itself.

3

File fragmentation at the operating system level

When performing deletes and inserts d over time, pages become fragmented as
the physical sequence of data pages no longer matches their logical order. This
fragmentation happens at the file allocation level. System tools can address this
fragmentation. On larger systems, such as a storage area network (SAN), the disk
subsystem automatically maintains low fragmentation levels. For small to medium
size systems without a SAN, run a tool for system defragmentation before
addressing logical order and page density fragmentation within databases.

Logical order fragmentation

Logical order fragmentation, also known as external fragmentation within
databases, is like file fragmentation at the operating system level. When deleting,
inserting, and changing data over time, an index can cause pages to be out of
order. In that case, the next logical page is not the same as the next physical page.

Page density fragmentation

Page density fragmentation, also known as internal fragmentation, occurs as
pages split to make room for information added to a page. In that case, there may
be excessive free space left on the pages. This extra space can cause database
instances to read more pages than necessary to perform certain tasks. It is
necessary to defragment the leaf level of an index so that the physical order of
the pages matches the left-to-right logical order of the leaf pages. The leaf pages
of a clustered index contain the table data. This process improves the
performance of index scanning and of all data retrieval activities.

FRAGMENTATION
EXAMPLES

Consider the case when there are
two data pages for a table with a
clustered index. The data is
ordered and the pages are full.
The following figure shows that.
Insert a new row with a primary
key of “5”. Since it is a clustered
index, insert the new row in order.
Because the target page is full
enough that the new row does not
fit, the database instance splits the
page roughly in half and inserts the

4

new data on the new page. The following figure shows that. Now, the
logical order of the index does not match the physical order. The index has
become fragmented.

HOW TO DEFRAGMENT INDEXES?
It is possible to defragment tables and indexes by rebuilding and reorganizing.

Rebuild

The defragmentation type of rebuild uses the command “DBCC DBREINDEX”
to rebuild the indexes on the tables. The rebuild operation creates new,
contiguous pages. It may be possible to rebuild online. That allows access to
the tables before the operation is finished. However, choosing to rebuild
online requires more resources (that is, disk space, CPU, and memory), and
may slow performance.

Reorganize

The defragmentation type of reorganize uses the command “DBCC
INDEXDEFRAG” to reorder the leaf pages of the index in-place. This process is
like a bubble sort. Although the pages are physically reordered, they may not
be contiguous within the data file. This issue can cause interleaved indexes,
which need to be rebuilt to store them in contiguous pages.

EXAMPLE: DEFRAGMENT AN INDEX

Consider a simplified example of pages after many inserts, updates, and
deletes. The following figure shows that. The page numbering represents the
logical sequence of the pages. However, the physical sequence, as shown in
the figure from left to right, does not match the logical sequence.

The following figure illustrates multiple passes during the reorganize
defragmentation process. This process causes reordering of the physical pages
by having the first logical page swapped with the first physical page, and then
the second logical page swapped with the second physical page, and so on.

5

1.	 On the first pass, the database instance finds
	 the first physical page (“4”) and the first logical
	 page (“1”). The database instance then swaps
	 these pages in a discrete transaction.

2.	 On the second pass, the database instance
	 swaps the next physical page (“7”) with the
	 next logical page (“2”).

3.	 On the third pass, the database instance
	 swaps the next physical page (“4”) with the
	 next logical page (“3”).

4.	 On the fourth pass, the database instance
	 swaps the next physical page (“5”) with the
	 next logical page (“4”).

Sorting is now complete, as all the remaining physical pages match their
logical positions.

HOW TO COMPACT DATA
Besides reordering the leaf pages of the index, it is possible to compact the
data in the pages using the original fill factor value specified for the table and
then remove any empty pages. Consider the following conditions related to this

compaction phase:

•	 Completely skip compaction when inhibiting page locks for the index.

•	 There are various algorithms built into the compaction phase to stop
	 unnecessary work. For example, if the first page in the index is empty and all
	 the other pages are full, then the database instance does not repeatedly
	 move all the data forward one page.

•	 The database instance compacts pages back to the fill factor value defined
	 for the index. Do not set this value too high.

•	 If a lock cannot be obtained on a page during the compaction phase of
	 the command “DBCC INDEXDEFRAG”, then the database instance skips
	 that page.

6

ABOUT INTERLEAVED INDEXES
Interleaving occurs when an index extent, which is a group of eight index pages,
is not physically contiguous because it intermingles with an extent for another
index. This condition can happen even when there is no logical fragmentation in
the index. Although the pages may be physically and logically ordered, they are
not necessarily contiguous. Switching between extents can affect performance
as data access is inefficient. To resolve this issue, rebuild the indexes to store
them in contiguous pages and reduce the need to switch between extents.

SQL DEFRAG MANAGER
SQL Defrag Manager is a powerful solution capable of detecting SQL Server
database fragmentation hot spots and defragmenting them automatically. Its
centralized management console enables users to control all defragmentation
activities across hundreds of servers. It also makes it easy for users to run
reports, to automate alerting, and set defragmentation policies. SQL Defrag
Manager performs the defragmentation process through scheduling of jobs to
ensure minimum impact to production servers and avoids any potential
problems with system resource pre-checks.

IDERA.comIDERA.com

Start for FREE

https://www.idera.com/productssolutions/sqlserver/sqldefragmanager/freetrialsubscriptionform?utm_medium=inasset&utm_content=pdf&utm_source=whitepaper&utm_campaign=what-is-index-fragmentation
https://www.idera.com
https://www.idera.com/productssolutions/sqlserver/sqldefragmanager/freetrialsubscriptionform?utm_medium=inasset&utm_content=pdf&utm_source=solutionbrief&utm_campaign=sqldefragmanager

