
1

BY GEORGE MCGEACHIE

®

ASSESSING
SUPPORT FOR
TOP-DOWN DATA
MODELING IN
TWO LEADING
TOOLS

2

TABLE OF CONTENTS

Introduction.. 3

Basic Principles Applied In This Review... 4

Product Overviews..5

Methodology...6

Two Modeling Approaches... 7

Silo Design... 7

ELDM-Driven Modeling..8

Approach 1 - Silo Design..8

Steps..8

How Well Do The Tools Support This Approach?......................................14

Approach 2 - ELDM-Driven... 15

Steps.. 16

Merging Selected Parts Of LDM Into ELDM...17

Generating A PDM..17

Denormalizing A PDM...18

How Well Do The Tools Support This Approach?..................................... 19

How Does This Affect My DBMS Migration Project?............................... 20

Conclusion... 22

Separation Of The Logical And Physical Views Of Data........................ 22

Traceability Through All The Levels.. 22

About The Author... 23

References.. 23

3

INTRODUCTION

According to the Data Management Body of Knowledge (DMBOK) data modeling is “the

process of discovering, analyzing, and scoping data requirements, and then representing

and communicating these data requirements in a precise form called the data model” (DAMA

International, 2017). Traditionally, data models have been constructed during projects that develop

IT systems and databases to solve business problems. Many of these projects operate in isolation

from other modeling efforts in the organization (I refer to this as ‘Silo Design’), whereas other

projects operate as part of an enterprise-wide approach using a common data model from which

their project models are derived.

In this review I examine two major data modeling tools - Idera ER/Studio Data Architect 18.5 (ER/

Studio) and erwin Data Modeler Standard Edition 2020 R2 (erwin DM).

4

BASIC PRINCIPLES

Several types of data models are commonly produced, the principal ones being Conceptual,

Logical, and Physical Data Models. The Conceptual Data Model especially is subject to a great

deal of debate about how it is used and what it should contain. By comparison, there is broad

agreement about the purpose and content of Logical and Physical Data Models and also

dimensional models which are, in these tools, an extension of the Physical Data Models.

In the first edition of “Data Modeling Made Simple” (Hoberman, Data Modeling Made Simple,

1st Edition, 2005), Steve Hoberman describes the distinction between Logical Data Models and

Physical Data Models simply and unambiguously - “the logical data model represents the rules

behind how the business or application works independent of context. The physical data model

represents the rules behind how the business or application is optimized for a specific context.”

In Steve’s later book “Data Model Scorecard” (Hoberman, Data Model Scorecard, 2015) he goes

on to say that the “logical data model looks the same regardless of whether we are implementing

in MongoDB or Oracle”.

I agree with Steve, the logical view of data as expressed in the Logical Data Model (LDM) must

not be influenced by my implementation decisions – these must be represented in the Physical

Data Model (PDM). In Graeme Simsion’s research into actual data modeling practice he found, for

example, that “specifying how subtype hierarchies will be implemented” (Simsion, 2007) is most

commonly regarded as Physical Data Modeling.

This review is focused on the support provided for the production of Logical and Physical Data

Models, maintaining the separation of the Logical and Physical views of data, and the support for

tracing the links between the two models.

Both tools in this review can be used stand-alone or with a repository; the repository provides

more than just a place to store models, it provides additional useful capabilities such as version

control. Both tools also have web portals although the erwin product is a third party offering not

produced by erwin.

The review focuses on using the two tools stand-alone (without the repository), examining their

support for the two data modeling approaches mentioned above, making note of any relevant

additional features that are available if you use the Repository. This is not unrealistic – on the

projects where I used erwin DM or ER/Studio in the past, we did not have access to a Repository.

5

PRODUCT OVERVIEWS

ER/Studio and erwin DM are long-standing players in the data modeling tools market, focusing

completely on the production of LDMs and PDMs. Both tools have powerful utilities for reconciling

the differences between two data models (in this case the term ‘data model’ can include an SQL

file, which the tool will use to construct a model for comparison purposes). These utilities provide

the essential capabilities necessary for managing the links between data models that I explore in

this review. Both tools allow you to choose the types of objects and properties to compare, and

which changes to apply to either of the two models (a bi-directional merge). Also, both tools allow

you to use subsets of the model (known by ER/Studio as ‘submodels’ and by erwin DM as ‘subject

areas’) to define the scope for comparison.

Erwin’s comparison utility is called Complete Compare, while ER/Studio’s is called the Compare

and Merge utility. Detailed analysis of the capabilities of these tools is outside the scope of

this review. The Design Layers feature of erwin DM appears to use a variation on the standard

Complete Compare function that has access to more information about the links between objects.

Both tools include a feature called ‘where used’ which allows you to see a list of objects linked

to the current object – in ER/Studio this can include objects in a different model, which is an

important feature as we describe later, linked using Universal Mappings.

A huge difference between the two products is that erwin does not allow multiple physical models

in the same overall model. This to me is a vital issue with erwin and obvious advantage for ER/

Studio. ER/studio allows more than one PDM in the same file, and they can all be radically different

from the LDM if needed. The ‘combined’ model in erwin DM cannot support multiple PDMs in

one file, insisting that the PDM and LDM are two views of the same set of objects. We’ll see this in

more detail later on.

6

METHODOLOGY

I created a simple LDM in both tools with enough complexity to make sure that my comparison is

realistic. One of the Entities (Company Office) and two of the Attributes (the last two Attributes in

Employee) are marked as Logical-only so they will not be in the first version of a PDM. The model

contains two many-to-many relationships that need to be resolved when the PDM is created.

Here is the same model defined in erwin DM:

7

You can see from these diagrams that

the two tools produce similar objects and

diagram symbols, though the ER/Studio

diagram contains some big colored boxes

that the erwin DM diagram does not

include. These are “Business Data Objects”

(BDOs), which can be used in a variety of

ways.

In this model, I use them to represent high-level business concepts. Business Data Objects (BDOs)

are the building blocks of Conceptual Data Models which aren’t supported at all by erwin. In

this diagram, the BDOs are ‘collapsed’ so the entities are hidden, and only the key connecting

relationships are shown.

I have used a few different icons to represent my opinions as I make my notes:

↓ Highlights an important point

☑ A potential advantage for this tool

☒ A potential disadvantage for this tool

TWO MODELING APPROACHES

In both of the following approaches, I need a Logical Data Model and two Physical Data Models –

to create two very similar databases, implemented in PostgreSQL and Snowflake.

SILO DESIGN

The modeling effort is isolated from other modeling efforts in the organization, producing a Logical

Data Model that will probably be inconsistent with Logical Data Models produced elsewhere in the

organization. This is the approach that is usually described by erwin in their marketing material.

In both tools, this approach can be supported by using a single file, stored locally or in the central

repository, that contains the required models.

Database 1

LDM

PDM 1

Database 2PDM 2

8

ELDM-DRIVEN MODELING

In this approach, there is a central Enterprise Logical Data Model (ELDM) from which project models are

derived. Project models may be used to extend and alter the ELDM. Various other labels might be used

for this central model, such as “canonical”. It may also be expressed as an ontology or something else

that is not a Logical Data Model. In this review, I assume that it is indeed a Logical Data Model.

Both tools make it possible to create and manage a set of related models, including multiple levels of

both Logical and Physical Data Models. Erwin DM supports this approach using ‘Design layers’.

ER/Studio supports this approach using the standard Compare and Merge Utility to both create and

manage the Subject Area layers.

The key difference between this approach and the ‘Silo Design’ approach is in the way the Logical Data

Model is defined. In both tools, we are forced to use a separate model file to contain the Enterprise

Logical Data Model (which is a very good thing to maintain separation between them)

APPROACH 1 - SILO DESIGN

In the Silo Design approach, the Logical Data

Model (LDM) may contain thoughts and ideas

from other project teams or elsewhere in the

organization, but the LDM is not linked in any

way to anything apart from the project’s own

Physical Data Models (PDMs).

STEPS

Here are the steps that I followed in both

tools. I have provided a side-by-side

comparison of the actions taken in each tool,

so you can assess the two tools for yourself.

In a review such as this, the modeling and

design process is necessarily simplified. There

are project and modeling tasks that are not

included in the comparison below, such as the

setting of naming standards. However, the fact

that these tasks have been excluded does not

mean that they are not important.

9

Create the Logical Data Model

ER/Studio Actions erwin DM Actions

Create a new Diagram1, which will automatically

include an empty Logical Data Model

Create a ‘combined’2 Logical / Physical

Model

Add the required data model objects Add the required data model objects

Observations
Both tools do an adequate job of creating the basic building blocks for a Logical Data Model.

Generate First Physical Data Model

ER/Studio Actions erwin DM Actions

Use the “Generate Physical Data Model” wizard

to generate a PostgreSQL PDM in the same file

as the LDM.

The Physical View is automatic – a different

view of the same objects shown in the

Logical View.

In the Physical Data Model, use the

denormalization techniques to roll the Course
table down into the two child tables.

Check the ‘Where Used’

In the Logical View, use the Supertype-

Subtype Rolldown transformation to roll the

Course table down into the two child tables.

Check the ‘Where Used’

Observations
Both tools allow me to mark entities, attributes, and relationships as Logical-only, preventing

objects from being included in the PDM if they are not wanted there. Both tools also allow me to

mark PDM tables, columns, and relationships as Physical-only.

erwin DM
☒↓ Every action you take to denormalize a Physical View (such as rolling up a relationship in the

Physical View) is mirrored in the Logical View; erwin DM does not maintain the separation of the

Logical and Physical views of data. This is not unique to the ‘combined’ model either (as I refer to

later in the review). Once you have closed the modeling session, erwin DM no longer ‘knows’ the

original LDM structure. If you want to collapse a level in your Supertype-subtype hierarchy, there

some limitations you need to be aware of:

1 The word “Diagram” has two meanings in ER/Studio. It can refer to an Entity-Relationship Diagram or
(more often) it refers to a file that contains one or more data models. In ER/Studio each submodel can only
contain one diagram, so a submodel is synonymous with an Entity-Relationship Diagram
2 In erwin DM, a ‘Logical/Physical’ model is a single model with two views of the objects it contains – the
label I prefer to use is ‘combined’

Course

Online CourseIn-Person Course

10

1.	 In the Physical View, you can only select one pair of tables for a roll-up or roll-down

2.	 After you have rolled-up or rolled-down, one of the tables is removed – this prevents you from
rolling-down a parent table into more than one child table

erwin DM provides several different types of transformation for

Supertype-Subtypes, some via the ribbon and some via the

properties for a Subtype symbol. The documentation does not

explain the differences clearly, so here is my interpretation of

the options available.

There are two different sets of actions you can take in the Logical View, depending on whether

you have enabled “Supertype-Subtype Transformations” in the general Options (on the Tools

ribbon).

Option is

enabled

The available transformations

are driven from the Logical

View but only change the

Physical View. In the

properties for the Subtype

symbol, you can change the

default Transformation Type, from ‘Identity’ to ‘Rollup’ – ‘Rolldown’ should

be available soon. The ‘Identity’ transformation converts the subtype

links into one-to-one relationships in the Physical View; the ‘Rollup’

transformation ensures that the Subtype tables do not exist – they are all

merged into the Supertype table. This change cannot be undone once
you have saved the model.
Transformations are not available on the Actions ribbon for Subtype

symbols.

Option is

NOT enabled

Transformations are available on the Actions ribbon for Subtype symbols.

These allow you to transform the Supertype-subtype set in one of three

ways in the Logical View – Rollup, Rolldown, Resolve to Identity (replace

Subtype links with relationships).

In the Combined model, I found that sometimes no changes were actually

made by these transformations.

1 For more information, see https://metadatamatters.com/fib-dm-in-er-studio/

In-personCourse

Course

EmployeeCourse

OnlineCourse

fibo-fnd-pas-pas:Product

fibo-fbc-pas-fpas:FinancialProduct fibo-fnd-pas-pas:ContractualProduct

fibo-fnd-pas-pas:CustomProductfibo-fnd-pas-pas:OffTheShelfProduct
Product subtype Product subtype

Product subtypeProduct subtype

11

☒ Rolling-up or rolling-down a

Supertype-Subtype hierarchy

applies the action to every entity

in that level in the hierarchy –

you cannot be selective. In my

sample model, for example,

I cannot choose to roll-up Online

Course into Course but leave

In-Person Course untouched.

These limitations in erwin DM

are amplified if your model has a

lot of subtyping, such as the FIB-

DM1 model – see the diagram on

the right for a small fragment of

that model.

In the ‘Where Used’ dialogues, all entities/tables, attributes/columns, and relationships are linked

to their equivalent in the other view (they are the same objects wearing different hats), unless

marked as Logical-only or Physical-only.

ER/Studio
☑ All denormalization transformations are carried out in the Physical Data Model – the LDM

is not affected.

☑ It is possible to roll-up or roll-down more than one PDM relationship at a time – I could, for

example, roll-down fibo-fnd-pas-pas:Product into three of the subtypes in a single operation,

leaving fibo-fnd-pas-pas:CustomProduct untouched.

I found that in ER/Studio – before I could

use the roll-up or roll-down on the Course

table I had to deal with the link to the table

EmployeeCourse, which was automatically

generated to resolve the many-to-many

relationship with Employee.

12

There are two ways to do this:

1.	 Delete and recreate the relationship from Course to EmployeeCourse - ☒ this breaks the link
back to the LDM

2.	 Resolve the many-to-many relationship in the LDM before you generate the PDM – this is my
preferred action. Although ER/Studio provides the user a facility to normalize the model in the
transformation. Idera, tell me as best practice, they encourage the designer to achieve Third
Normal Form in the logical before generating the physical model(s).

In the ‘Where Used’ dialogues, all tables and columns are linked to the LDM objects, except for

the tables derived from many-to-many relationships (Idera tell me they are linked behind the

scenes where I cannot see them). If a table has been denormalized out of existence in the PDM,

the original LDM entity is linked to the Transformation that removed the table.

☑ If required, I can also include Views in the LDM, which can then be generated into the PDM.

Alternatively, Views in the LDM can be marked as Logical-only, perhaps being used to represent

reporting or integration requirements.

Create the Database

ER/Studio Actions erwin DM Actions

Use the DDL Generation Wizard to generate

a database either using a direct connection or

as one or more script files. I do not have the

DBMS installed, so I generated a script file.

Use the Forward Engineer Schema

Generation to generate a database either

using a direct connection or as one or more

script files. I do not have the DBMS installed,

so I generated a script file.

Observations
The two SQL scripts generated are structured differently, but I’m able to reverse-engineer both

of them into a third data model to compare the results – I could see that both tools generated

acceptable SQL scripts (though I prefer the comments that were added to the ER/Studio script).

Also ER/Studio can break the DDL script into smaller more manageable files.

13

Create the Second Physical Data Model

↓ There are a number of situations where a second PDM is needed:

•	 You need the same data structures to be available in more than one database (perhaps one
is for reporting)

•	 You are migrating from one DBMS to another

•	 Integration projects where you need to understand semantic matches between data

•	 Master Data Management and Data Governance projects, again trying to understand where
key data is deployed

ER/Studio Actions erwin DM Actions

Use the “Generate Physical Data Model”

wizard to generate a Snowflake PDM in the

same file as the LDM and the existing PDM.

Amend Naming Standards if required

Rename table TeamMember to

TeamMembership
Check the ‘Where Used’

erwin DM cannot have more than one PDM

in a file – the only available option is to

derive a new PDM from the LDM. There

will be no initial connection between the

LDM and this new PDM, but a subsequent

Compare operation will produce links

between the objects.

Observations
☑ ER/Studio allows more than one PDM in the same file, and they can all be radically different

from the LDM.

☒ The ‘combined’ model in erwin DM cannot support multiple PDMs in one file, insisting that the

PDM and LDM are two views of the same set of objects.

Edit the Logical Data Model

ER/Studio Actions erwin DM Actions

Remove the Logical-only flag from one Entity and two Attributes.

Change the data type for a Domain

Observations
In both tools, when changing the Data Type for a domain, it also changed the Data Type for every

Attribute and/or Column linked to the domain. In both tools you can prevent this by telling the

tool that you want to override the properties inherited from the domain. In ER/Studio, select the

‘Override Bound Data’ option; in erwin DM, select the ‘Override’ option. ER/Studio supports user

defined data types as their own objects in the dictionary whereas erwin only supports UDD’s in

the physical properties of the Domain

14

Update the Physical Data Model from the LDM

ER/Studio Actions erwin DM Actions

Use the Compare and Merge utility to update

the first PDM from the LDM.

The first PDM has already been updated - the

second PDM cannot be updated in the same

way because it’s in a separate file.

Update the Database from the PDM

ER/Studio Actions erwin DM Actions

Use compare and merge to generate

ALTER file (you can also directly update the

database).

The script file generated earlier can be used

to represent the current state of the database.

erwin does not support reverse-engineering

a PostgreSQL script to create a model - which

is necessary for the comparison - so cannot

generate ALTER script or even verify the

differences.

HOW WELL DO THE TOOLS SUPPORT THIS APPROACH?

As I mentioned before, both tools can create and manage the objects needed to represent the

Logical and Physical Views of data. In the approach being tested here, all our models lie in one file

– so be careful what changes you do or do not save.

↓ Both tools automatically resolve many-to-many relationships in the PDM though I suggest, as

best practice, that you resolve those relationships in the LDM, instead of letting either tool make

the decisions for you.

↓ Both tools support the use of object naming standards, along with the ability to synchronize

logical and physical object names, though neither tool is foolproof. I was able to break the link

between logical and physical objects in both tools by renaming the two linked objects (such as an

entity and table). Both tools allowed me to link them together again, and ER/Studio allowed me to

prevent this happening by enforcing full synchronization of logical and physical names.

↓ ☒ erwin DM’s ‘combined’ model has a very serious architectural flaw – it is impossible to

separate the Logical and Physical views of data. If you have no subtyping in the Logical view and

no denormalization in the Physical view this will not be a problem, but in my experience, that is not

a realistic scenario.

ER/studio allows more than one PDM in the same file, and they can all be radically different from

the LDM if needed. The ‘combined’ model in erwin DM cannot support multiple PDMs in one file,

insisting that the PDM and LDM are two views of the same set of objects.

ELDM LDMs PDMs Databases

15

If I need to compare a PDM with a database that I’m not able to connect to, I will need to compare

it with another PDM or with a script file that represents all or part of the database.

☒ In erwin DM my options are limited, as it cannot reverse-engineer SQL scripts for PostgreSQL

and Snowflake. I must treat the SQL file as ODBC-standard SQL, which limits the objects and

properties I can compare.

Here is a visual summary of the models created in each tool:

APPROACH 2 - ELDM-DRIVEN

In this approach, the Logical Data Model (LDM) contains more than just thoughts and ideas from

other project teams or elsewhere in the organization, it contains data structures that have already

been approved, and possibly represent data that is already available within the organization.

The steps followed are mostly the same as for the ‘Silo Design’ approach. I focus on the steps that

are extra or different:

•	 the way the LDM is created and initially populated

•	 a feedback loop to the ELDM

•	 the way Physical Data Models are created in erwin DM

•	 the way Supertype/subtype clusters are handled in erwin DM.

16

STEPS

Creating the Logical Data Model

ER/Studio Actions erwin DM Actions

Create a new Diagram – this will automatically

create an LDM.

Use the Compare and Merge utility to copy

required objects across from the ELDM (this

process can be repeated as requirements

change). The scope of the merge could be

defined using a submodel in the ELDM.

Open the ELDM

Derive a new Logical Model using the Design

Layers feature. The scope of the new model

could be defined using a Subject Area in the

ELDM.

Extend LDM where required Extend LDM where required

Observations
Both tools allowed me to copy the items that I wanted in my new LDM, and create links back to

the original model. In erwin DM the links were created automatically. In ER/Studio, I needed to

save the mappings, where they are created as ‘Universal Mappings’.

erwin DM
☑ The “Link Source Model” utility allows you to derive model objects from another model - this

could be useful if you have already done some modeling work before you bring in content from

the ELDM.

☑ The source models are listed in the Browser, so I can easily see that the LDM was derived from

the ELDM.

☒ The documentation says that the source and target models are automatically linked when

you derive a model, and that these links allow you to synchronize the two models at any time.

However, this information is not visible through the user interface in the Source model. In the

derived model, the model and objects have an entry in the history property that tells you the

objects they were derived from. There is no apparent way to interrogate that history; perhaps to

list the objects that do or do not originate from the ELDM. You can visualize the links by running

Sync with Model Source in Design Layers.

☒ In my ELDM, I cannot see any information about the LDM that I derived from it. This information

is visible in the third party Web Portal product though, and there is also a report that you can run

from erwin DM that examines the links in the repository.

17

ER/Studio
☑ Once both models have been checked in to the Repository (Team Server), I can select the

“Save As Universal Mappings” option. These mappings are recognized by the Compare and

Merge utility, making it simple to match LDM objects to the equivalent ELDM objects, irrespective

of what has happened to the object names. I can also create these Universal Mappings myself by

choosing ‘Save Mappings’ when comparing two models or by using the Universal Mappings utility,

which is useful where name matches don’t exist, perhaps when mapping a siloed project model to

the ELDM.

MERGING SELECTED PARTS OF LDM INTO ELDM

ER/Studio Actions erwin DM Actions

Use the Compare and Merge utility to merge

to and from the ELDM (this process can be

repeated as needed).

Use “Sync with Source Model” to merge

to and from the ELDM (this process can

be repeated as needed). You can also use

Complete Compare (see below for a note

about this).

Observations

erwin DM
↓ I experimented with using both Complete Compare and Sync with Model Source to merge

to and from the ELDM. Sync with Model Source was more successful at remembering the links

between objects. The concept of linking objects in ERwin is to associate the object id’s and store

the pairs in the child model, save the model as an XML file and you can see these. This may have

been user error but, I did find that the links would be forgotten if both linked objects have been

renamed – matching them together in the comparison did sort the issue.

ER/Studio
↓ If I remember to save the mappings as Universal Mappings, ER/Studio correctly shows me the

links.

GENERATING A PDM

ER/Studio Actions erwin DM Actions

Use the “Generate Physical Data Model” wizard

to generate a PDM in the same file.

Derive a new Physical Model using the

Design Layers feature. The scope of the

new model could be defined using a

Subject Area in the LDM.

18

Observations

erwin DM
☒↓ Now that the models are in separate files, I cannot see the object names used in the ‘other’

model – when I look at an entity in the LDM I cannot see the table name(s). When I look at a table

in the PDM I cannot see the entity name, except in the History property (which has a line telling me

which object it was derived from).

Updating PDM with LDM changes

ER/Studio Actions erwin DM Actions

Use the Compare and Merge utility to merge

to and from the LDM (this process can be

repeated as needed).

Use “Sync with Source Model” to merge

to and from the LDM (this process can be

repeated as needed). You can also use

Complete Compare (see below for a note

about this).

Observations
Both tools allowed me to create and update the items I wanted to update.

erwin DM
When I use Complete Compare to compare the LDM and PDM immediately after deriving the

PDM, tables with multi-word names did not match up, neither do any of the columns. For example,

the entity Team Member is not matched with the table TeamMember. To get around this, change

the default comparison options, telling it not to compare the physical names – now everything

lines up. I did not have the same issue using “Sync with Model Source” - it uses some metadata

that the standard Complete Compare does not have access to.

DENORMALIZING THE PDM

ER/Studio Actions erwin DM Actions

Experiment with rolling-down and rolling-up the subtyping structures and applying other

normalization techniques – principally to test the separation of Logical and Physical Views.

Observations
Both tools provide comprehensive denormalization features, though ER/Studio has some

advantages from my perspective.

19

☑ ER/Studio can roll-down a table into several child tables in one operation

☒ erwin DM only processes two tables at a time – this makes it impossible to roll one parent table

down into more than one child in erwin DM, unless you use super/subtype roll-downs in the LDM

and merge the change into the PDM, which defeats the objective of having a normalized LDM.

☑ ER/Studio remembers the transformations that you carry out (linking them back to the

LDM objects). In addition, ER/Studio can show you the state of the model before and after the

transformation (via the Where Used tab for the PDM table and the affected LDM entities).

☒ In erwin DM, if I roll-up the OnlineCourse table into the Course table, a new line is added to

History property in the Course table – that is the only record that I can see that recognizes that

the transformation took place.

HOW WELL DO THE TOOLS SUPPORT THIS APPROACH?

Here is a visual summary of the models created in each tool:

erwin DM
☒ Because erwin DM’s forces me to carry out some of my denormalizations in the LDM, I have

added a second project LDM for manipulating the many-to-many relationships and the Supertype/

subtype hierarchies. If you need to resolve the Supertype/subtype issues differently for each

database, the PDMs shown below will need to be ‘combined’ models.

20

As previously noted, the inter-model links can only really be visualized when using the Design

layers feature to synchronize a model with a source, you would need to make your own notes

about the links between the models. If you have the erwin Web portal, you can visualize the links

there.

ER/Studio

☑ ER/Studio allows me to maintain the separation between the Logical and Physical views of

data, so the number of models needed is reduced, as is the complexity of the tasks to carry out.

☑ ER/Studio Universal Mappings allow me to navigate nicely between the ELDM and the project

models, with these relationships being visible in Data Architect and the web based Team Server

product. Idera tell me that there will be new graphical visualizations of these relationships coming

out in version 19, making it easier to navigate between models.

HOW DOES THIS AFFECT MY DBMS
MIGRATION PROJECT?

Changing your preferred DBMS is a major task in any organization. If you are converting a

database from PostgreSQL to Oracle or vice versa, you need an LDM to define the requirements

for your new database. If you plan to merge two or more databases, a single LDM, that represents

all business entities including common ones across multiple applications, is vital. If the LDM does

not exist, you need to create it.

21

Here is an option for a model-driven migration approach. There are alternative approaches using

a custom semantic model or an off the shelf ELDM. For this approach, you will need to:

•	 Reverse-engineer a PDM for the existing database(s)

•	 Derive the LDM for the database(s)
- alter it if required (possibly based on the ELDM)
- are you brave enough to sneak in new requirements at the same time?

•	 Create and refine the PDM for the new database

•	 Define the data mappings from the old PDM(s) to the new PDM

This process will involve at least three closely linked data models, along with the mappings that

will be used to define how the data will flow from the current database(s) to the new database

during the migration phase. Both tools allow you to define those flows via Visual Data Lineage in

ER/Studio, and Data Movement Sources in erwin DM. Data Movement Sources are only available

in the erwin PDM or a ‘combined’ model, whereas ER/Studio allows you to record Data Lineage in

the LDM and PDM as well. This is very useful if, for example, you want to map multiple PDMs to a

single LDM (such as the LDM for that Data Warehouse you are thinking of building).

I know from experience that lineage information is represented graphically in the ER/Studio user

interface. There is no such view in erwin DM.

In erwin DM I would use the Design Layers feature to manage three or more separate model files,

which I know it can do. I have real concerns about how I could keep track of the similarities and

differences between the models, and the data mappings (as I have already stated). ER/Studio

allows you to manage all those models in a single file, making it easier to keep track of similarities

and differences, and the data mappings that are so necessary for a successful migration project.

In ER/Studio you can use the built-in Metadata import bridge to import ETL code. It will create

several PDMs representing the source and target databases, in a single file, linking them together

using Visual Data Lineage. erwin DM does not provide this automatic lineage creation capability,

though it is available in the erwin Data Intelligence Suite which is a separate product to erwin DM.

22

CONCLUSION

SEPARATION OF THE LOGICAL AND PHYSICAL VIEWS OF DATA

Both tools are competent enough at the bread-and-butter modeling of databases – they will both

create logical and physical data models, propagate changes from one model to the other in both

directions, and create database scripts. Both will reverse-engineer databases. But they are not equal

when it comes to maintaining the separation of the logical and physical views of data, a capability

vital for maintaining good practice during the change process.

☑ ER/Studio maintains that separation.

☒ In the ‘combined’ (Logical/Physical) model, erwin DM forces you to break that separation. Using

the Design Layers approach, erwin DM makes it too easy to break this separation by making it easier

to deal with Supertype/subtype structures in the LDM instead of in the PDM.

Please remember that this is not a full evaluation, a bug-hunt, nor a click-by-click tool comparison.

TRACEABILITY THROUGH ALL THE LEVELS

Being able to manage the logical and physical modeling objects is not enough by itself – we need

to be able to trace and visualize the links between the models. For example, the concept of a ‘Team’

could be represented by a series of linked objects in our models, such as the ELDM entity Team,

several entities (probably also called Team) in project LDMs, and several tables in PDMs. I would

like to be able to trace these links easily, preferably with a graphical view of the links. Unfortunately,

neither tool provides a graphical view of the dependencies between objects, unlike some of their

competitors (though both repositories make this possible).

In the absence of a graphical view of the links, I would like to be able to see the links in the user

interface. Crucially, I want to be able to see the links from ‘both ends’, such as from the ELDM down to

the LDM and from the LDM up to the ELDM.

☒ Without a repository, erwin DM users cannot follow the links from ELDM to LDM, to PDM.

☑ ER/Studio users can trace those links without a repository, using Universal Mappings.

IDERA.com

23

ABOUT THE AUTHOR

George McGeachie is an independent information management practitioner, with 30+ years’

experience creating and managing data (and other) models in many organizations. He encourages

organizations to connect and utilize their metadata islands. He is a blogger, co-author of “Data

Modeling Made Simple Using PowerDesigner” with Steve Hoberman, and author of several

articles on TDAN.com. In case you’re interested, he has hands-on experience of many metadata

and modeling tools, including the Adaptive Repository, ASG Rochade, Bachmann GroundWorks,

Bachmann Terrain & Terrain Map, erwin Data Modeler, ICL DDS, Idera ER/Studio Business Architect,

Idera ER/Studio Data Architect, Intersolv Excelerator, MSP DataManager, Oracle Designer, Popkin

System Architect, SAP PowerDesigner, and Visio Professional.

REFERENCES

[1] Hoberman, S. (2005). Data Modeling Made Simple, 1st Edition. New Jersey: Technics Publications.

[2] Hoberman, S. (2015). Data Model Scorecard. New Jersey: Technics Publications.

[3] International, D. (2017). Data Management Body of Knowledge. New Jersey: Technics Publications.

[4] Simsion, G. (2007). Data Modeling Theory and Practice. New Jersey: Technics Publications.

