
Precise Case Study
®

Telecomm Enterprise Improves Database Performance by Almost 400%

PRECISE
FOR ORACLE
DATABASE

A large enterprise telecommunications company that provides wireless services and internet services in the United

States of America uses a third-party application to gather configuration and performance data on their servers. However,

a batch job that runs at midnight each night to gather data from these servers and load it into the service reporter

database was taking far too much time to run. By analyzing the long history of performance data within Precise, it

appeared that a particular statement was slowly increasing in execution time.

INTRODUCTION

The company uses a third-party application to manage the Information Technology infrastructure. The company runs a

batch job at midnight each night to gather configuration and performance data from 2,000 of their servers and load the

data into the Service Reporter database of the third-party application. Data analysts begin at 8:30 AM to review the data

gathered during the previous evening for capacity planning.

THE APPLICATION

The batch job that loads the data was taking 12 hours to run. The consultants for the third-party application do not

have access to modifying the source code of the third-party application. The company was expecting to increase the

number of processed servers from 2,000 to 6,000. The team for the third-party application was planning on upgrading

their hardware to handle this additional data. Data analysts in the group for capacity planning were unable to start their

analysis until as late as noon.

THE PROBLEM

The company installed monitors for Precise on the Oracle Database server for the Service Reporter database.

The Precise agents were collecting data continuously for over nine months leading up to the problem.

THE PRECISE INSTALLATION

By analyzing the long history of performance data within Precise, it appeared that fewer than six SQL statements were

accounting for the majority of time spent in the Oracle Database. A single SQL statement was slowly increasing in

execution time. However, this problem was not apparent unless they looked at six months of data. The ‘SQL’ workspace

showed that several key indexes were missing. Analysis of individual SQL statements showed that adding indexes

would have a huge positive impact with minimal risk. The ‘What-If’ workspace showed that adding indexes would not

adversely affect other SQL statements.

The ‘In Oracle’ area at the top of the ‘Activity’ workspace for the relevant instance of Oracle Database (Figure 1), the

overall performance showed an excessive amount of internal lock wait and input/output wait (with almost 16 hours and

almost 11 hours, respectively, at midnight). The “Statements: Entries Sorted by In Oracle (Summed)” area at the bottom

of the ‘Activity’ workspace shows that the top three statements together account for more than 50% of all of the time in

Oracle Database (with some 32%, 13%, and 10%, respectively).

THE PRECISE ANALYSIS – PHASE 1

Figure 1:
The ‘In Oracle’ area at the top of the ‘Activity’ workspace for the relevant instance of Oracle Database.

Figure 2:
The ‘In Oracle’ area at the top of the ‘Activity’ workspace for the relevant instance

of Oracle Database before and after adding efficient indexes.

The ‘In Oracle’ area at the top of the ‘Activity’ workspace for the relevant instance of Oracle Database (Figure 2) shows

that the run-time of the batch job reduced to 4½ hours (that is, refer to the clock time of the sixth vertical bar) by creating

efficient indexes with the ‘SQL’ workspace.

Indexes were further refined using the ‘SQL’ workspace. It appears that sequence values of Oracle Database, used

extensively in the batch process, were not being cached that resulted in a lot of internal lock wait states. The company

changed all sequences that were not using the cache.

It also appeared that SQL statements had many hardcoded values. The third-party application set the parameter

‘CURSOR_SHARING’ that determines what kind of SQL statements can share the same cursors to ‘EXACT’ which only

allows statements with identical text to share the same cursor.

This setting resulted in tens of thousands of hard parses. The company changed this setting to ‘SIMILAR’ that causes

statements that may differ in some literals but are otherwise identical to share a cursor unless the literals affect either

the meaning of the statement or the degree to which the plan is optimized. After these additional changes, the company

reduced the run-time of the batch job from 4½ hours to 2½ hours.

The ‘Overview’ area at the top of the ‘Objects’ workspace for the relevant instance of Oracle Database (Figure 3) shows

the cumulative positive effects of all changes. That is, compare the final bar and its informational balloon of this screen

capture image with the first bar and its informational balloon from Figure 1.

THE PRECISE ANALYSIS – PHASE 2

Figure 3:
The “Overview” area at the top of the ‘Objects’ workspace for the relevant instance of Oracle Database after the changes.

The run-time of the batch job processing 2,000 servers was reduced from 12 hours to 2½ hours without modifying any

source code. The team for the third-party application is now able to process the required 6,000 servers in less than

8½ hours. The batch job now spends only 20% of its time in the Oracle Database, as compared to 90% earlier.

The evolution of the performance tuning with Precise shows the initial performance (Figure 4a), the performance after

the first phase of the analysis that resulted in adding useful indexes (Figure 4b), and the performance after the second

phase of the analysis that resulted in modifying a parameter (Figure 4c).

THE RESOLUTION

Figure 4a: Initial performance.

The evolution of performance

tuning with Precise

Figure 4b: performance after

the first phase of the analysis.

Figure 4c: performance after the

second phase of the analysis.

The company can now postpone a necessary hardware upgrade indefinitely. A particular consultant for the third-party

application who had been focusing on the performance of the application can now focus on the functional aspects

of the application. The business consultants can now have the data ready for their analysis when they arrive in the

morning. The manager of the group for capacity planning told another vendor that Precise saved his group “hundreds of

thousands if not millions of dollars” by avoiding unnecessary costs for hardware and software upgrades.

THE SAVINGS

The business-critical third-party application that gathers configuration and performance data from 2,000 servers had a

batch job that was running in 12 hours. The expected throughput of the application was going to triple. Precise showed

how to make changes to indexes, objects, and initialization parameters. The company reduced the run-time of the batch

job to 2½ hours. The analysts of the company now have the data they need when they need it. The company achieved

an almost 400% improvement in job throughput without having access to any source code to the third-party application

by only changing the database.

SUMMARY

PRECISE FOR ORACLE DATABASE
ACCELERATE BUSINESS PERFORMANCE

•	 Database Performance Fuels Company Performance

•	 Multiple Platform Database Monitoring and Alerting

•	 Performance Management Database

•	 Root Cause Identification

•	 Tuning Recommendations

•	 What-if Analysis

•	 Capacity Planning

IDERA.com

SEE IT IN ACTION

https://www.idera.com/application-performance-monitoring/requestademo
https://www.idera.com/application-performance-monitoring/requestademo

